首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
MATLAB logit回归模型
2024-10-04
matlab-逻辑回归二分类(Logistic Regression)
逻辑回归二分类 今天尝试写了一下逻辑回归分类,把代码分享给大家,至于原理的的话请戳这里 https://blog.csdn.net/laobai1015/article/details/78113214 (在这片博客的基础上我加了一丢丢东西). 用到的预测函数为 其中,h为预测函数(大于0.5为一类,小于等于0.5为另一类).θ为各个特征的参数.θ=[θ1,θ2,θ3...]T 损失函数J(θ)为 利用梯度下降算法进行参数的更新公式如下: 其中,α是学习率参数,λ是正则项参数,需要自己输入.
MATLAB中回归模型
(1).一元线性回归:数学模型定义 模型参数估计 检验.预测及控制 1.回归模型: 可线性化的一元非线性回归 (2).多元线性回归:数学模型定义 模型参数估计 多元线性回归中检验与预测 逐步回归分析 希腊字母表:α 阿尔法, β 贝塔, γ 伽玛,δ 德尔塔, ε 伊普西隆, ζ 泽塔, η 伊塔, θ 西塔, ι 约塔, κ 卡帕, λ 兰姆达,μ 米欧 ,ν 纽, ξ 克西, ο 欧米克隆, π 派, ρ 柔 ,σ 西格玛, τ 陶 ,υ 玉普西隆, φ 弗爱
MATLAB随机森林回归模型
MATLAB随机森林回归模型: 调用matlab自带的TreeBagger.m T=textread('E:\datasets-orreview\discretized-regression\10bins\abalone10\matlab\test_abalone10.2'); X=textread('E:\datasets-orreview\discretized-regression\10bins\abalone10\matlab\train_abalone10.2'); %nTree =
二分类Logistic回归模型
Logistic回归属于概率型的非线性回归,分为二分类和多分类的回归模型.这里只讲二分类. 对于二分类的Logistic回归,因变量y只有“是.否”两个取值,记为1和0.这种值为0/1的二值品质型变量,我们称其为二分类变量. 假设在自变量$x_{1}, x_{2}, \cdots, x_{p}$作用下,y取“是”的概率是p,则取“否”的概率是1-p,研究的是当y取“是”发生的模率p与自变量$x_{1}, x_{2}, \cdots, x_{p}$的关系. Logistic回归模型 ①Logit变
如何在R语言中使用Logistic回归模型
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或不流失.涨或跌等,对于这类问题,线性回归将束手无策.这个时候就需要另一种回归方法进行预测,即Logistic回归. 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素: 2)用于预测,可以预测某种情况发生的概
SPSS数据分析—多分类Logistic回归模型
前面我们说过二分类Logistic回归模型,但分类变量并不只是二分类一种,还有多分类,本次我们介绍当因变量为多分类时的Logistic回归模型. 多分类Logistic回归模型又分为有序多分类Logistic回归模型和无序多分类Logistic回归模型 一.有序多分类Logistic回归模型 有序多分类Logistic回归模型拟合的基本方法是拟合因变量水平数-1个Logistic回归模型,也称为累积多分类Logit模型,实际上就是将因变量依次分割成两个等级,对这两个等级建立二分类Logistic
SPSS数据分析—二分类Logistic回归模型
对于分类变量,我们知道通常使用卡方检验,但卡方检验仅能分析因素的作用,无法继续分析其作用大小和方向,并且当因素水平过多时,单元格被划分的越来越细,频数有可能为0,导致结果不准确,最重要的是卡方检验不能对连续变量进行分析. 使用线性回归模型可以解决上述的部分问题,但是传统的线性模型默认因变量为连续变量,当因变量为分类变量时,传统线性回归模型的拟合方法会出现问题,因此人们继续发展出了专门针对分类变量的回归模型.此类模型采用的基本方法是采用变量变换,使其符合传统回归模型的要求.根据变换的方法不同也就衍
logistic回归模型
一.模型简介 线性回归默认因变量为连续变量,而实际分析中,有时候会遇到因变量为分类变量的情况,例如阴性阳性.性别.血型等.此时如果还使用前面介绍的线性回归模型进行拟合的话,会出现问题,以二分类变量为例,因变量只能取0或1,但是拟合出的结果却无法保证只有这两个值. 那么使用概率的概念来进行拟合是否可以呢?答案也是否定的,因为1.因变量的概率和自变量之间的关系不是线性的,通常呈S型曲线,并且这种曲线是无法通过曲线直线化进行处理的.2.概率的取值应该在0-1之间,但是线性拟合的结果范围是整个实数集,并
逻辑回归模型(Logistic Regression)及Python实现
逻辑回归模型(Logistic Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 在分类问题中,比如判断邮件是否为垃圾邮件,判断肿瘤是否为阳性,目标变量是离散的,只有两种取值,通常会编码为0和1.假设我们有一个特征X,画出散点图,结果如下所示.这时候如果我们用线性回归去拟合一条直线:hθ(X) = θ0+θ1X,若Y≥0.5则判断为1,否则为0.这样我们也可以构建出一个模型去进行分类,但是会存在很多的缺点,比如稳健性差.准确率低.而逻辑
SPSS分析技术:无序多元Logistic回归模型;美国总统大选的预测历史及预测模型
SPSS分析技术:无序多元Logistic回归模型:美国总统大选的预测历史及预测模型 在介绍有序多元Logistic回归分析的理论基础时,介绍过该模型公式有一个非常重要的假设,就是自变量对因变量多个类别(因变量是定序数据)的影响程度是相同的.如果因变量有4个水平,那么有序多元逻辑回归分析最终会产生3个回归方程,这些回归方程除了常数项以外,其余的部分都是一样的,这就体现了模型的假设.因为有这个假设的存在,所以做有序多元Logistic回归分析时,可以同时输出平行性检验结果.如果检验结果不通过,那么
Logistic 回归模型的参数估计为什么不能采用最小二乘法?
logistic回归模型的参数估计问题,是可以用最小二乘方法的思想进行求解的,但和经典的(或者说用在经典线性回归的参数估计问题)最小二乘法不同,是用的是"迭代重加权最小二乘法"(IRLS, Iteratively Reweighted Least Squares).本质上不能使用经典的最小二乘法的原因在于,logistic回归模型的参数估计问题不能"方便地"定义"误差"或者"残差". 下面是对经典线性回归问题和logistic
SPSS数据分析—Poisson回归模型
在对数线性模型中,我们假设单元格频数分布为多项式分布,但是还有一类分类变量分布也是经常用到的,就是Poisson分布. Poisson分布是某件事发生次数的概率分布,用于描述单位时间.单位面积.单位空间内某件事发生的次数规律,在对数线性模型中 ,如果单元格频数分布服从Poisson分布,那么拟合的模型就是Poisson对数线性模型,由于其结构和回归模型类似,因此也可以称 为Poisson回归模型. 由于Poisson回归模型也属于对数线性模型的一种,因此也包含在对数线性模型的过程中 例,希望分析
SPSS数据分析—配对Logistic回归模型
Lofistic回归模型也可以用于配对资料,但是其分析方法和操作方法均与之前介绍的不同,具体表现 在以下几个方面1.每个配对组共有同一个回归参数,也就是说协变量在不同配对组中的作用相同2.常数项随着配对组变化而变化,反映了非实验因素在配对组中的作用,但是我们并不关心其大小, 因此在拟合时采用条件似然函数代替了一般似然函数,从而在拟合中消去了反映层因素的参数. SPSS中没有直接拟合配对Logistic回归模型的过程,需要对数据进行一些处理,采用其他方法进行拟合,拟合方法有变量差值拟合和COX模型
Poisson回归模型
Poisson回归模型也是用来分析列联表和分类数据的一种方法,它实际上也是对数线性模型的一种,不同点是对数线性模型假定频数分布为多项式分布,而泊松回归模型假定频数分布为泊松分布. 首先我们来认识一下泊松分布: 一.泊松分布的概念和实际意义: 我们知道二项分布是离散型概率分布中最重要的一种,而二项分布的极限形式就是泊松分布(P很小,n很大),也是非常重要的一种离 散型概率分布,现实世界中许多偶然现象都可以用泊松分布来描述. 泊松分布认为:如果某些现象的发生概率p很小,而样本例数n又很大,则二项分布
Probit回归模型
Probit模型也是一种广义的线性模型,当因变量为分类变量时,有四种常用的分析模型: 1.线性概率模型(LPM)2.Logistic模型3.Probit模型4.对数线性模型 和Logistic回归一样,Probit回归也分为:二分类Probit回归.有序多分类Probit回归.无序多分类Probit回归. 我们再来回顾一下因变量为分类变量的分析思路,以二分类因变量为例,为例使y的预测值在[0,1]之间,我们构造一个理论模型: 函数F(x,β)被称为“连接函数”,如果连接函数为标准正态分布,则模型
逻辑回归模型(Logistic Regression, LR)基础
逻辑回归模型(Logistic Regression, LR)基础 逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函数,使得逻辑回归模型成为了机器学习领域一颗耀眼的明星,更是计算广告学的核心.本文主要详述逻辑回归模型的基础,至于逻辑回归模型的优化.逻辑回归与计算广告学等,请关注后续文章. 1 逻辑回归模型 回归是一种极易理解的模型,就相当于y=f(x),表明自变量x与因变量y的关系.最常见问题有如医生治病时的望.
深度学习实践系列(1)- 从零搭建notMNIST逻辑回归模型
MNIST 被喻为深度学习中的Hello World示例,由Yann LeCun等大神组织收集的一个手写数字的数据集,有60000个训练集和10000个验证集,是个非常适合初学者入门的训练集.这个网站也提供了业界对这个数据集的各种算法的尝试结果,也能看出机器学习的算法的演进史,从早期的线性逻辑回归到K-means,再到两层神经网络,到多层神经网络,再到最近的卷积神经网络,随着的算法模型的改善,错误率也不断下降,所以目前这个数据集的错误率已经可以控制在0.2%左右,基本和人类识别的能力相当了. 这
回归模型效果评估系列1-QQ图
(erbqi)导语 QQ图全称 Quantile-Quantile图,也就是分位数-分位数图,简单理解就是把两个分布相同分位数的值,构成点(x,y)绘图:如果两个分布很接近,那个点(x,y)会分布在y=x直线附近:反之则不:可以通过QQ图从整体评估回归模型的预测效果 QQ图一般有两种,正态QQ图和普通QQ图,区别在于正态QQ图中其中有一个分布是正态分布,下面来看下这两种分布 正态QQ图 下图来自这里
weka实际操作--构建分类、回归模型
weka提供了几种处理数据的方式,其中分类和回归是平时用到最多的,也是非常容易理解的,分类就是在已有的数据基础上学习出一个分类函数或者构造出一个分类模型.这个函数或模型能够把数据集中地映射到某个给定的类别上,从而进行数据的预测.就是通过一系列的算法,将看起来本来分散的数据,给划分成一个个不同的类,我们可以知道某个数据为什么要划分到这个类别,后来的数据通过这个过程就可以知道把它划分到哪个类别,从而进行了数据的预测. 要进行分类,我们根据什么分类,这就需要把数据分为训练集和测试集两个部分,先分析训练
手写数字识别 ----Softmax回归模型官方案例注释(基于Tensorflow,Python)
# 手写数字识别 ----Softmax回归模型 # regression import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data data = input_data.read_data_sets("/tmp/data/", one_hot=True) # 获取数据 mnist是一个轻量级的类,其中以Numpy数组的形式中存储着训练集.验证集.测试集. #
第十三次作业——回归模型与房价预测&第十一次作业——sklearn中朴素贝叶斯模型及其应用&第七次作业——numpy统计分布显示
第十三次作业——回归模型与房价预测 1. 导入boston房价数据集 2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 3. 多元线性回归模型,建立13个变量与房价之间的预测模型,并检测模型好坏,并图形化显示检查结果. 4. 一元多项式回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 代码: #导入boston房价数据集 from sklearn.datasets import load_boston import pandas as pd boston =
热门专题
nmap扫描不出任何端口
html label 怎么垂直
playbook 压缩模块
时间戳存储int还是char
layui-tab 切换时加载
pika ssl 客户端
android rxandroid 具体使用
虚拟机卸载后的虚拟网卡如何卸载
下面不可以解析XML的是
linux 安装weblogic集群
git worktree表示当前文件嘛
支持冒泡吗onmouseover
js 把this传给别人初始化后
qfatal 输出 qstring
underscore 节流函数使用
msyql5.6.17安装包
vmware ubuntu 文件移出到主机
linux 同步硬时钟到系统
乌班图下载pycharm
浏览器内网预览word