"QR_H.m" function [Q,R] = QR_tao(A) %输入矩阵A %输出正交矩阵Q和上三角矩阵R [n,n]=size(A); E = eye(n); X = zeros(n,); R = zeros(n); P1 = E; :n- s = -sign(A(k,k))*norm(A(k:n,k)); R(k,k) = -s; w = [A(,)+s,A(:n,k)']'; else w = [zeros(,k-),A(k,k)+s,A(k+:n,k)']'; R(:
最近数值计算学了Guass列主消元法和三角分解法解线性方程组,具体原理如下: 1.Guass列选主元消去法对于AX =B 1).消元过程:将(A|B)进行变换为,其中是上三角矩阵.即: k从1到n-1 a. 列选主元 选取第k列中绝对值最大元素作为主元. b. 换行 c. 归一化 d. 消元 2).回代过程:由解出. 2.三角分解法(Doolittle分解) 将A分解为如下形式 由矩阵乘法原理 a.计算U的第一行,再计算L的第一列 b.设已求出U的1至r-1行,L的1至r-1列.先计算U的第r行
问题是这样,如果我们知道两个向量v1和v2,计算从v1转到v2的旋转矩阵和四元数,由于旋转矩阵和四元数可以互转,所以我们先计算四元数. 我们可以认为v1绕着向量u旋转θ角度到v2,u垂直于v1-v2平面. 四元数q可以表示为cos(θ/2)+sin(θ/2)u,即:q0=cos(θ/2),q1=sin(θ/2)u.x,q2=sin(θ/2)u.y,q3=sin(θ/2)u.z 所以我们求出u和θ/2即可,u等于v1与v2的叉积,不要忘了单位化:θ/2用向量夹角公式就能求. ma