一.背景 微博,一个DAU上亿.每日发博量几千万的社交性产品,拥有庞大的数据集.如何高效得从如此规模的数据集中挖掘出有价值的信息,以增强用户粘性,提高信息传播速度,就成了重中之重.因此,我们引入了hadoop 分布式计算平台,对用户数据和内容数据进行分析和挖掘,作为广告推荐的基础. 二.问题及解决方案 在hadoop平台上进行开发时,主要遇到了以下一些问题: 2.1 数据量庞大 问题:无论在进行针对用户的协同过滤运算,还是在计算用户可能错过的微博中,无一例外的都遇到了数据量太大无法进行运算的情况