声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine Learning>一书中的开头有讲到:“概率论.决策论.信息论3个重要工具贯穿着<PRML>整本书,虽然看起来令人生畏…”.确实如此,其实这3大理论在机器学习的每一种技法中,或多或少都会出现其身影(不局限在概率模型). <PRML>书中原话:”This chapter also
A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P improves with experience E ML Algorithms Overview Supervised learning <= "teach" pr
Multithreaded Libraries Performance The single-threaded CRT is no longer ( in vs2005 ) available. This topic discusses how to get the maximum performance from the multithreaded libraries. The performance of the multithreaded libraries has been improv
最近还没更完OpenCV又开了新坑,谁教machine learning处在紧急又重要的地位呢.更新的内容总结自Pattern Recognition and Machine Learning by Christopher M. Bishop,英文书哪里都好,不过有时候表达一个意思要写好大一段啊,所以内容上只保留了精华部分.考虑应该做ML通用英文,所以没有翻译,文章中一些重要的“请读者证明”和练习用的Matlab代码也会一并更新. Training phase (learning phase)