前言: 项目开发中,影响项目进程的常常是由于在前后端数据交互的开发流程中停滞,前端完成静态页面的开发后,后端迟迟未给到接口.而现在,我们就可以通过根据后端接口字段,建立一个REST风格的API接口,进而实现mock数据实现前端的独立开发. json-server 通过json-server完成mock数据 GitHub介绍:Get a full fake REST API with zero coding in less than 30 seconds (seriously) Created w
前言: 项目开发中,影响项目进程的常常是由于在前后端数据交互的开发流程中停滞,前端完成静态页面的开发后,后端迟迟未给到接口.而现在,我们就可以通过根据后端接口字段,建立一个REST风格的API接口,进而实现mock数据实现前端的独立开发. json-server 通过json-server完成mock数据 GitHub介绍:Get a full fake REST API with zero coding in less than 30 seconds (seriously) Created w
很多正在入门或刚入门TensorFlow机器学习的同学希望能够通过自己指定图片源对模型进行训练,然后识别和分类自己指定的图片.但是,在TensorFlow官方入门教程中,并无明确给出如何把自定义数据输入训练模型的方法.现在,我们就参考官方入门课程<Deep MNIST for Experts>一节的内容(传送门:https://www.tensorflow.org/get_started/mnist/pros),介绍如何将自定义图片输入到TensorFlow的训练模型. 在<Deep M