首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
mos管栅极和源极之间的电阻
2024-10-19
MOS管的栅极和源极之间的电阻
MOS管的栅极和源极之间的电阻: 一是为场效应管提供偏置电压:二是起到泻放电阻的作用:保护栅极G-源极S: 保护栅极G-源极S: 场效应管的G-S极间的电阻值是很大的,这样只要有少量的静电就能使他的G-S极间的等效电容两端产生很高的电压,如果不及时把这些少量的静电泻放掉,两端的高压就有可能使场效应管产生误动作,甚至有可能击穿其G-S极:这时栅极与源极之间加的电阻就能把上述的静电泻放掉,从而起到了保护场效应管的作用. 具体的例子:MOS管在开关状态工作时,Q1.Q2是轮流导通,MOS管栅极在反复充
【转】学习MOS管技术知识,这篇文章就够了!
MOS管学名是场效应管,是金属-氧化物-半导体型场效应管,属于绝缘栅型.本文就结构构造.特点.实用电路等几个方面用工程师的话简单描述. 其结构示意图: 解释1:沟道 上面图中,下边的p型中间一个窄长条就是沟道,使得左右两块P型极连在一起,因此mos管导通后是电阻特性,因此它的一个重要参数就是导通电阻,选用mos管必须清楚这个参数是否符合需求. 解释2:n型上图表示的是p型mos管,读者可以依据此图理解n型的,都是反过来即可.因此,不难理解,n型的如图在栅极加正压会导致导通,而p型的相反. 解释3
几种常用的MOS管参数、应用电路及区别:IRF540N、IRF9540N、IRF9540
1. IRF540N,N沟道,100V,33A,44mΩ@10V 栅极(Gate-G,也叫做门极),源极(Source-S), 漏极(Drain-D) 漏源电压(Vdss) 100V 连续漏极电流(Id)(25°C 时) 33A 栅源极阈值电压 4V @ 250uA 漏源导通电阻 44mΩ @ 16A,10V 最大功率耗散(Ta=25°C) 130W 类型 N沟道 IRF540N(NMOS管)应用电路 MOS管由电压控制,与三极管不同(三极管是电流控制).说白了,给箭头方向相反的压降就是导通,方
N沟通场效应管深度图解(1)工作原理及Multisim实例仿真
场效应晶体管(Field Effect Transistor, FET)简称场效应管,是一种由多数载流子参与导电的半导体器件,也称为单极型晶体管,它主要分型场效应管(Junction FET, JFET)和金属-氧化物半导体场效应管(Metal-Oxide Semiconductor FET,MOSFET),属于电压控制型半导体器件,具有输入电阻高.噪声小.功耗低.动态范围大.易于集成.无二次击穿现象.安全工作范围宽等优点. 本节我们讲解一下N沟道增强型MOS场效应管,其基本结构如下图所示: 如
基于4H-SIC的先进集成电路用n型LDMOS晶体管
基于4H-SIC的先进集成电路用n型LDMOS晶体管 摘要: 通过对具有不同的设计方式的具有减小的表面电场的横向4H-SIC-N型-横向扩散金属氧化物半导体(LDMOS)晶体管进行测量和模拟,得到了得出了不同的设计情况下集成电路中的电气行为.在p型参杂的外延层中制作一个额外n型区域从而形成漂移区,这促进了减小表面电场并因此增强了击穿能力.已有功率MOSFET的设计规则可与现有的20伏特4H-SIC的CMOS工艺技术兼容.额外植入的减小表面电场区域在深度大约为390纳米处为3.5×1012cm2.
三极管与MOS管主要参数差别及驱动电路基极(栅极)串联电阻选取原则
三极管与MOS管都常在电路中被当做开关使用,比较起来: 1. 三极管集电极电流IC (一般为mA级别),远小于MOS管ID(一般为A级别),因此MOS管多用在大电流电路中,如电机驱动 2. 三极管耗散功率(一般为mW级别)一般也远小于MOS管耗散功率(一般为W级别) 3. 三极管死区时间及上升时间一般长于MOS管死区时间及上升时间,高速情况下多用MOS管 4. MOS管导通电阻一般较小,为mΩ级别 三极管基极串联电阻选取: 三极管集电极电流IC 为mA级别,截止电流为nA级别,因此基极串联电阻一
(转载)mos管电压规格是什么,什么是VMOS管栅极
电压规格:VDSS.VDS.BVDSS.V(BR)DSS VDSS中的"V"表示电压,前面的"D"."S"表示"Drain"(漏极)与"Source"(源极),最后一个"s"表示"Short"(短路).VDSS的具体含义是"Maximum Drain-SourceVoltage Rating with Gate-Source Shorted",中文
MOS管常识
http://anlx27.iteye.com/blog/1583089 学过模拟电路,但都忘得差不多了.重新学习MOS管相关知识,大多数是整理得来并非原创.如有错误还请多多指点! 先上一张图 一. 一句话MOS管工作原理 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到一定电压(如4V或10V, 其他电压,看手册)就可以了. PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动).但是,虽然PMO
MOS管
mos工作原理:http://www.360doc.com/content/15/0930/11/28009762_502419576.shtml, 开关特性好,长用于开关电源马达驱动,CMOS相机场合. MOS管的工作原理(以N沟道增强型MOS场效应管)它是利用VGS来控制“感应电荷”的多少,以改变由这些“感应电荷”形成的导电沟道的状况,然后达到控制漏极电流的目的.在制造管子时,通过工艺使绝缘层中出现大量正离子,故在交界面的另一侧能感应出较多的负电荷,这些负电荷把高渗杂质的N区接通,形成了导电
MOS管开关电路笔记
1.MOS管开关电路是利用MOS管栅极(g)控制MOS管源极(s)和漏极(d)通断的原理构造的电路.MOS管分为N沟道与P沟道,所以开关电路也主要分为两种.P沟道或N沟道共四种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管.实际应用中,NMOS居多.其主要特点是结构简单.制造方便.集成度高.功耗低,但速度较慢.三极管是流控流器件,也就是由基极电流控制集电极与发射极之间的电流:而MOS管是压控流器件,也就是由栅极上所加的电压控制漏极与源极之间电流. 2.PMOS的特性,Vgs
MOS管驱动电路,看这里就啥都懂了
一.MOS管驱动电路综述在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素.这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的.1.MOS管种类和结构MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种.至于为什么不使用耗尽型的
MOS管防反接电路设计
转自嵌入式单片机之家公众号 问题的提出 电源反接,会给电路造成损坏,不过,电源反接是不可避免的.所以,我们就需要给电路中加入保护电路,达到即使接反电源,也不会损坏的目的 01二极管防反接 通常情况下直流电源输入防反接保护电路是运用二极管的单向导电性来完结防反接保护.这种接法简略可靠,但当输入大电流的情况下功耗影响是非常大的.以输入电流额定值抵达2A,如选用Onsemi的快速恢复二极管 MUR3020PT,额定管压降为0.7V,那么功耗至少也要抵达:Pd=2A×0.7V=1.4W,这样功率低,发
MOS管实现的STC自动下载电路
目录 MOSFET, MOS管基础和电路 MOS管实现的STC自动下载电路 三极管配合 PMOS 管控制电路开关 STC MCU在烧录时, 需要断电重置后才能进入烧录状态, 通常是用手按开关比较繁琐. 如果利用STC-ISP在烧录开始时会拉低RTS的特性, 可以实现烧录开始时自动断电复位. 电路仿真测试 下面的电路适用于烧录下载STC MCU. 使用LTspice模拟. V2 为方波, 电压[0, 3.3V], 宽度1.5s 以下为模拟输出, 绿色为三极管基极电压, 红色为MOS管栅极(Gate
硬件工程师必会电路模块之MOS管应用
实际工程应用中常用的MOS管电路(以笔记本主板经典电路为例): 学到实际系统中用到的开关电路模块以及MOS管非常重要的隔离电路(结合IIC的数据手册和笔记本主板应用电路): MOS管寄生体二极管,极性判断?** 1. MOS管开关电路学习过模拟电路的人都知道三极管是流控流器件,也就是由基极电流控制集电极与发射极之间的电流:而MOS管是压控流器件,也就是由栅极上所加的电压控制漏极与源极之间电流.MOSFET管是FET的一种,可以被制造为增强型或者耗尽型,P沟道或N沟道共四种类型,但实际应用的只有增
MOS管知识大集
MOS管 增强型:就是UGS=0V时漏源极之间没有导电沟道,只有当UGS>开启电压(N沟道)或UGS<开启电压(P沟道)才可能出现导电沟道.耗尽型:就是UGS=0V时,漏源极之间存在导电沟道 1.导通特性 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了. PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动).但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原
设计的MOS管三极管简单开关电路驱动能力不够3
16楼说得非常明白,补充一点,R3如果不要,会有下冲产生.4 Q: Z/ G G1 s8 Z- } 能解释下为什么会产生过冲吗?9 i, P* D* X) u. t/ b ^ 让我们这些菜鸟学习学习 回复 支持 反对 举报 EDA365微信号及QQ群号! tyongfeng18 0 主题 3 帖子 83 积分 二级会员(20) 积分 83 发消息 32# 发表于 2012-7-31 13:51 | 只看该作者 当电压12V输入的时候,D2没拿掉为好. 回复
设计的MOS管三极管简单开关电路驱动能力不够1
您需要 登录 才可以下载或查看,没有帐号?注册 x . ?& P' U5 r/ ~& `: B 用AOD409设计的开关电路为什么驱动能力不够,请大家帮忙分析一下原因啊.这个电路作用就是输入为高电平(3.3V)时5V\12V接通,输入低电平断开.这个电路可以实现断开与接通功能,但就是驱动不了我的马达.马达直接接电源可以转,通过这个电路就不转,应该是电流不够吧.谢谢啦~ 分享到: QQ好友和群 QQ空间 腾讯微博 腾讯朋友 微信 收藏5 支持! 反对! 微信分享 回复 举报
P0口上拉电阻选择
如果是驱动led,那么用1K左右的就行了.如果希望亮度大一些,电阻可减小,最小不要小于200欧姆,否则电流太大:如果希望亮度小一些,电阻可增大,增加到多少呢,主要看亮度情况,以亮度合适为准,一般来说超过3K以上时,亮度就很弱了,但是对于超高亮度的LED,有时候电阻为10K时觉得亮度还能够用.我通常就用1k的. 对于驱动光耦合器,如果是高电位有效,即耦合器输入端接端口和地之间,那么和LED的情况是一样的:如果是低电位有效,即耦合器输入端接端口和VCC之间,那么除了要串接一个1——4.7k之间的
《FPGA全程进阶---实战演练》第二十一章 细说低速与高速电路设计之电阻 电容 电感 磁珠
1.1 什么是高速电路 信号的最高频率成分是取决于有效频率,而不是周期频率. 高速电路的定义是根据信号的有效频率来计算的,在现实世界中,任何信号都是由多个频率分量的正弦波叠加而成的.定义各正弦波分量的幅值为VN,则VN = 2 / (3.14 x N),可见各级谐波分量的幅值与频率成反比.现实信号,随着频率的升高,其各级谐波分量的幅值比理想方波中相同频率正弦波分量的幅值下降的更快,直到某级谐波分量.其幅值下降到理想方波中对应分量的70%(即功率下降到50%),定义该谐波分量的频率为信号的有效
MOS简单应用
高端功率开关驱动的原理非常简单,和低端功率开关驱动相对应,就是负载一端和开关管相连,另外一端直接接地.正常情况下,没有控制信号的时候,开关管不导通,负载中没有电流流过,即负载处于断电状态:反之,如果控制信号有效的时候,打开开关管,于是电流从电源正端经过高端的开关管,然后经过负载流出,负载进入通电状态,从而产生响应的动作.基本的驱动原理图如图所示. 一般现在采用的开关功率管为N型MOSFET,N型MOSFET的优点是驱动采用电压驱动,驱动电流很小,驱动功耗低,而且工作频率可以很高,适用于高
热门专题
oracle创建用户并授权命令
linux服务器终端上 把本地文件上传服务器
弹框中显示vue-amap
input中date控件怎么改变值
QProcess 通信
如何将MySql表名对应实体类名
maven-assembly-plugin 多模块打包
防火墙设置ldap禁用匿名访问
ubuntu20.04如何配置yocto
SSH key 本机生成
CSDN 免关注js
主动监测与被动检测 扰度的区别
java输入mysql中文变成问号
unity 剧情系统
大整数乘法思想是什么
.Net core MVC设置默认页
Linux ubuatu web压力测试
ctfhub技能树cookie
haproxy百度翻译
mingw编译ffmpeng wasm