首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
MOS管驱动感性负载
2024-10-04
MOSFET与MOSFET驱动电路原理及应用(转)
源:http://www.micro-bridge.com/news/news.asp?id=258 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素.这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的. 1.MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道M
MOS管驱动电路,看这里就啥都懂了
一.MOS管驱动电路综述在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素.这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的.1.MOS管种类和结构MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种.至于为什么不使用耗尽型的
三极管和MOS管驱动电路的正确用法
1 三极管和MOS管的基本特性 三极管是电流控制电流器件,用基极电流的变化控制集电极电流的变化.有NPN型三极管(简称P型三极管)和PNP型三极管(简称N型三极管)两种,符号如下: MOS管是电压控制电流器件,用栅极电压的变化控制漏极电流的变化.有P沟道MOS管(简称PMOS)和N沟道MOS管(简称NMOS),符号如下(此处只讨论常用的增强型MOS管): 2 三极管和MOS管的正确应用 (1)P型三极管,适合射极接GND集电极接负载到VCC的情况.只要基极电压高于射极电压(此处为GND)0.7V
MOS管驱动详解
1.常用的几种电平转换方案 2.三极管的电平转换及驱动电路分析 3.三级管老怀 4.关于MOSFET管驱动电路总结 5.一个IIC的5V和3.3V电平转换的经典电路分享 6.mos 7.mos应用 8.MOS管基本原理 9.dj 10.代码 微信分享: 在电平转换器的操作中要考虑下面的三种状态:1 没有器件下拉总线线路.“低电压”部分的总线线路通过上拉电阻Rp 上拉至3.3V. MOS-FET 管的门极和源极都是3.3V, 所以它的VGS 低于阀值电压,MOS-FET 管不导通.这就允许
详细讲解MOSFET管驱动电路(转)
作者: 来源:电源网 关键字:MOSFET 结构 开关 驱动电路 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素.这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的. 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创.包括MOS管的介绍,特性,驱动以及应用电路. 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以
MOS管常识
http://anlx27.iteye.com/blog/1583089 学过模拟电路,但都忘得差不多了.重新学习MOS管相关知识,大多数是整理得来并非原创.如有错误还请多多指点! 先上一张图 一. 一句话MOS管工作原理 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到一定电压(如4V或10V, 其他电压,看手册)就可以了. PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动).但是,虽然PMO
MOSFET管应用总结
/* *本文转载自互联网,仅供个人学习之用,请勿用于商业用途. */ 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素.这样的电路也许是可以工作的 ,但并不是优秀的,作为正式的产品设计也是不允许的. 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创.包括MOS管的介绍,特性,驱动以及应用电路. 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFE
MOSFET学习
MOS/CMOS集成电路简介及N沟道MOS管和P沟道MOS管 在实际项目中,我们基本都用增强型mos管,分为N沟道和P沟道两种. 我们常用的是NMOS,因为其导通电阻小,且容易制造.在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管.这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要.顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的. 1.导通特性 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电
三极管与MOS管主要参数差别及驱动电路基极(栅极)串联电阻选取原则
三极管与MOS管都常在电路中被当做开关使用,比较起来: 1. 三极管集电极电流IC (一般为mA级别),远小于MOS管ID(一般为A级别),因此MOS管多用在大电流电路中,如电机驱动 2. 三极管耗散功率(一般为mW级别)一般也远小于MOS管耗散功率(一般为W级别) 3. 三极管死区时间及上升时间一般长于MOS管死区时间及上升时间,高速情况下多用MOS管 4. MOS管导通电阻一般较小,为mΩ级别 三极管基极串联电阻选取: 三极管集电极电流IC 为mA级别,截止电流为nA级别,因此基极串联电阻一
MOS管
mos工作原理:http://www.360doc.com/content/15/0930/11/28009762_502419576.shtml, 开关特性好,长用于开关电源马达驱动,CMOS相机场合. MOS管的工作原理(以N沟道增强型MOS场效应管)它是利用VGS来控制“感应电荷”的多少,以改变由这些“感应电荷”形成的导电沟道的状况,然后达到控制漏极电流的目的.在制造管子时,通过工艺使绝缘层中出现大量正离子,故在交界面的另一侧能感应出较多的负电荷,这些负电荷把高渗杂质的N区接通,形成了导电
MOS管知识大集
MOS管 增强型:就是UGS=0V时漏源极之间没有导电沟道,只有当UGS>开启电压(N沟道)或UGS<开启电压(P沟道)才可能出现导电沟道.耗尽型:就是UGS=0V时,漏源极之间存在导电沟道 1.导通特性 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了. PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动).但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原
[Fundamental of Power Electronics]-PART I-4.开关实现-0 序
4 开关实现 在前面的章节中我们已经看到,可以使用晶体管,二极管来作为Buck,Boost和其他一些DC-DC变换器的开关元件.也许有人会想为什么会这样,以及通常如何实现半导体的开关.这些都是值得被提出的问题,开关的实现可能取决于所执行电源处理的功能.逆变器与Cycloconverter相比这些DC-DC变换器的开关需要更为复杂的实现.同样,实现半导体开关的方式可以通过上一章的理想开关分析所无法预测的方式来改变变换器的性能,例如下一章将会介绍不连续导电模式.本章的主题是使用晶体管和二极管实现开关
BLDC有感FOC算法理论及其STM32软硬件实现
位置传感器:旋转编码器 MCU:STM32F405RGT6 功率MOS驱动芯片:DRV8301 全文均假设在无弱磁控制的情况下 FOC算法理论 首先,我们要知道FOC是用来干什么的?有什么用?相比于BLDC的六步方波驱动有什么优点? 传统的六步方波驱动由于产生的磁场旋转运动不连续,导致电机转子受的驱动力矩发生突变(转矩脉动),即使通过增加电机极对数也不能的很好解决这一问题.另外由于方波驱动产生的驱动力不能全部的用于转子切线方向的转矩,还有一部分力损失在转子径向
硬件篇-03-SLAM移动底盘电气设计
最近因为在忙毕设,专栏已经1个多月没更,对于托更我很抱歉.不过这几周真的没什么时间,Rick&Morty的最新集我到现在都还没看哈哈. 现在毕设已经搞得差不多了,水专栏文章的快乐生活就要开始了.这篇主要讲设计SLAM小车的控制板相关,偏硬件单片机和电气设计,不感兴趣的同学可以自行略过. 因为我的SLAM小车底盘需要有6路电机控制和旋转编码器反馈,以及电机驱动功能,TX2上的IO口和PWM等外设是不够用的,所以决定自己设计一个集电机驱动和控制的PCB,这样更方便.专业一点,具体功能如下
Micropython Turnipbit 换挡风扇 旋转按钮控制直流电机转速
学过物理学的我们都知道换挡风扇的原理,一般按钮控制电感分压或者电容分压,以达到控制电流的目的.那么我们可不可以使用Turnipbit模拟这个系统呢?其实是很简单的.类似于之前用Tpyboard做的智能温控小风扇,有兴趣的同学也可以了解下. 所需原器件: Turnipbit一块 Turniobit扩展板一块 杜邦线若干 usb数据线一条 按键模块一个 直流电机一个 L298N电机驱动模块一个 四叶风扇一个 原理很简单 通过按钮模块给Turnipbit发出指令,Turnipbit将指令反馈给L298
GPIO输入输出各种模式(推挽、开漏、准双向端口)详解
转自:https://blog.csdn.net/techexchangeischeap/article/details/72569999 概述 能将处理器的GPIO(General Purpose Input and Output)内部结构和各种模式彻底弄清楚的人并不多,最近在百度上搜索了大量关于这部分的资料,对于其中很多问题的说法并不统一.本文尽可能的将IO涉及到的所有问题罗列出来,对于有明确答案的问题解释清楚,对于还存在疑问的地方也将问题提出,供大家讨论. 概括地说,IO的功能模式大致可以
[MicroPython]TurnipBit开发板旋转按钮控制直流电机转速
1.实验目的: 学习在PC机系统中扩展简单I/O 接口的方法 学习TurnipBit拼插编程 了解直流电机的工作原理 学习L298N的工作原理 学习TurnipBit扩展板L298N和按键模块的接线方式 2.所需原器件: TurnipBit一块 TurnioBit扩展板一块 杜邦线若干 usb数据线一条 按键模块一个 直流电机一个 L298N电机驱动模块一个 3.实验原理: L298N是一种高电压.大电流电机驱动芯片.该芯片采用15脚封装.主要特点是:工作电压高,最高工作电压可达46v,输出电流
Arduino通过L9110进行电机控制
L9110S是为控制和驱动电机设计的两通道推挽式功率放大专用集成电路器件,将分立电路集成在单片IC之中,使外围器件成本降低,整机可靠性提高. 该芯片有两个TTL/CMOS兼容电平的输入,具有良好的抗干扰性:两个输出端能直接驱动电机的正反向运动,它具有较大的电流驱动能力,每通道能通过750-800mA的持续电流,峰值电流能力可达1.5-2.0A:同时它具有较低的输出饱和压降与静态电流:内置的钳位二极管能释放感性负载的反向冲击电流,使它在驱动继电器.直流电机.步进电机或开关功率管的使用上安全可靠.
【博客大赛】使用LM2677制作的3V至24V数控可调恒压源
[博客大赛]使用LM2677制作的3V至24V数控可调恒压源 http://bbs.ednchina.com/BLOG_ARTICLE_3013105.HTM LM2677,是TI公司生产的高效率5A开关buck稳压器,由于它内部具备的low ON-register DMOS功率开关,使得它能够驱动大电流负载.LM2677有+3.3V.+5V.+12V和AJUSTABLE四个版本,其中AJUSTABLE的输出范围是1.2V~37V,使用它可以做一个可调的恒压源. 官方手册中给出的AJUSTA
你要的fpga&数字前端笔面试题都在这儿了
转自http://ninghechuan.com 你要的FPGA&数字前端笔面试题来了 FPGA&ASIC基本开发流程 题目:简述ASIC设计流程,并列举出各部分用到的工具. 勘误:Calibre是Mentor公司的 ASIC开发基本流程 芯片架构,考虑芯片定义.工艺.封装 RTL设计,使用Verilog.System Verilog.VHDL进行描述 功能仿真,理想情况下的仿真 验证,UVM验证方法学.FPGA原型验证 综合,逻辑综合,将描述的RTL代码映射到基本逻辑单元门.触发器上 D
热门专题
to_number函数返回值是什么类型
sublime 列编辑
nmap为什么有些内网的机器没扫描出来
java web 面试
如何让router-link进入详情页返回不刷新
前端接收golang传来的json数据
vs2019 wpf程序打包
qmdiarea背景图片
.net 6 Task 并发执行
qq聊天界面测试用例设计
如何使window用root用户登录时把权限赋给普通用户
csdn离线网页跳转
android 布局 文字在某个图片右边
Highcharts 值小数点保留两位
CVE Binary Tool 组件清单
thinkphp block 自定义
jdbc查询oracle
hexo 腾讯云域名 配置https
lodop插件安不上去
WM_CONCAT 不按 排序