Indexes and search engines These sites provide indexes and search engines for Go packages: godoc.org gowalker gosearch Sourcegraph Contributing To edit this page you must be a contributor to the go-wiki project. To get contributor access, send mail t
转http://www.open-open.com/lib/view/open1396063913278.html内容目录Astronomy构建工具缓存云计算命令行选项解析器命令行工具压缩配置文件解析器控制台用户界面加密数据处理数据结构数据库和存储开发工具分布式/网格计算文档编辑器Encodings and Character SetsGamesGISGo ImplementationsGraphics and AudioGUIs and Widget ToolkitsHardwareLangu
Aho和Corasick对KMP算法(Knuth–Morris–Pratt algorithm)进行了改进,Aho-Corasick算法(Aho-Corasick algorithm)利用构建树,总时间复杂度是O(n).原理图如下(摘自Aho-Corasick string matching in C#): Building of the keyword tree (figure 1 - after the first step, figure 2 - tree with the fail fu
内容目录 Astronomy 构建工具 缓存 云计算 命令行选项解析器 命令行工具 压缩 配置文件解析器 控制台用户界面 加密 数据处理 数据结构 数据库和存储 开发工具 分布式/网格计算 文档 编辑器 Encodings and Character Sets Games GIS Go Implementations Graphics and Audio GUIs and Widget Toolkits Hardware Language and Linguistics 日志 机器学习 Math
Horst Rutter edited this page 7 days ago · 529 revisions Indexes and search engines These sites provide indexes and search engines for Go packages: awesome-go - A community curated list of high-quality resources. Awesome Go @LibHunt - Your go-to Go T
KMP算法 Knuth–Morris–Pratt algorithm 克努斯-莫里斯-普拉特 算法 algorithm kmp_search: input: an array of characters, S (the text to be searched) an array of characters, W (the word sought) output: an array of integers, P (positions in S at which W is found) an int
如何加速朴素查找算法? KMP,当然还有其他算法,后续介绍. Knuth–Morris–Pratt string search algorithm Start at LHS of string, string[0], trying to match pattern, working right. Trying to match string[i] == pattern[j]. Given a search pattern, pre-build a table, next[j], s
Implement strStr(). Returns the index of the first occurrence of needle in haystack, or -1 if needle is not part of haystack. 问题:实现 strStr() 函数.即在 haystack 中匹配 needle 字符串. 可以理解为,实际上这道题是在问如何实现 KMP(Knuth–Morris–Pratt) 算法.这是个效率比较高的算法,只需要扫一遍 haystack 就可
后缀自己主动机(sam)对字符串匹配 ==== 我们已经配置了一个相对较短的模式字符串sam. 为P="abcabcacab", T[1..i]后缀.因此,它是sam最长前缀长度: T: b a b c b a b c a b c a a b c a b c a b c a c a b c 1 1 2 3 1 1 2 3 4 5 6 7 1 2 3 4 5 6 7 5 6 7 8 9 10 4 假设最长前缀长度是|P|,则表示T[1..i]的后缀和P匹配. 内存使用 可能多个t