SSE(和方差.误差平方和):The sum of squares due to errorMSE(均方差.方差):Mean squared errorRMSE(均方根.标准差):Root mean squared errorR-square(确定系数):Coefficient of determinationAdjusted R-square:Degree-of-freedom adjusted coefficient of determination 下面我对以上几个名词进行详细的解释下,相
SSE(和方差.误差平方和):The sum of squares due to error MSE(均方差.方差):Mean squared errorRMSE(均方根.标准差):Root mean squared errorR-square(确定系数):Coefficient of determinationAdjusted R-square:Degree-of-freedom adjusted coefficient of determination 下面我对以上几个名词进行详细的解释下,
转载自:http://blog.csdn.net/l18930738887/article/details/50629409 SSE(和方差.误差平方和):The sum of squares due to errorMSE(均方差.方差):Mean squared errorRMSE(均方根.标准差):Root mean squared errorR-square(确定系数):Coefficient of determinationAdjusted R-square:Degree-of-fre
目录 基于 Keras 用深度学习预测时间序列 问题描述 多层感知机回归 多层感知机回归结合"窗口法" 改进方向 扩展阅读 本文主要参考了 Jason Brownlee 的博文 Time Series Prediction With Deep Learning in Keras 原文使用 python 实现模型,这里是用 R 基于 Keras 用深度学习预测时间序列 时间序列预测一直以来是机器学习中的一个难题. 在本篇文章中,将介绍如何在 R 中使用 keras 深度学习包构建神经网络