啊啊啊~ 目的 1.考虑图像预处理的合理性和结果.能达到什么样的结果,该结果是否满足我的需要,如果多余是否有删除的必要? 2.切割问题,他是怎样实现字符的切割的?字符之间识别的依据和划定该依据的标准是什么? Part 1 % function [d]=main() close all clc % 清空命令窗口的所有输入和输出,类似于清屏 clear %自动弹出提示框读入图像 [filename,filepath]=uigetfile('.jpg','输入一个需要识别的图像');% 直接自动读入%
在基于DNN-HMM的语音识别中,DNN的作用跟GMM是一样的,即它是取代GMM的,具体作用是算特征值对每个三音素状态的概率,算出来哪个最大这个特征值就对应哪个状态.只不过以前是用GMM算的,现在用DNN算了.这是典型的多分类问题,所以输出层用的激活函数是softmax,损失函数用的是cross entropy(交叉熵).不用均方差做损失函数的原因是在分类问题上它是非凸函数,不能保证全局最优解(只有凸函数才能保证全局最优解).Kaldi中也支持DNN-HMM,它还依赖于上下文(context d
TensorFlow实现Softmax Regression(回归)识别手写数字.MNIST(Mixed National Institute of Standards and Technology database),简单机器视觉数据集,28X28像素手写数字,只有灰度值信息,空白部分为0,笔迹根据颜色深浅取[0, 1], 784维,丢弃二维空间信息,目标分0~9共10类.数据加载,data.read_data_sets, 55000个样本,测试集10000样本,验证集5000样本.样本标注信