首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
NFA 确定化为 DFA
2024-08-31
第八次作业-非确定的自动机NFA确定化为DFA
NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1.根据NFA构造DFA状态转换矩阵 ①确定DFA初态(NFA的所有初态集),字母表 ②从初态出发,经字母表到达的状态集看成一个新状态 ③将新状态添加到DFA状态集 ④重复23步骤,直到没有新的DFA状态 2.画出DFA 3.看NFA和DFA识别的符号串是否一致. 练习: 1.解决多值映射:子集法 1)
非确定的自动机NFA确定化为DFA
摘要: 在编译系统中,词法分析阶段是整个编译系统的基础.对于单词的识别,有限自动机FA是一种十分有效的工具.有限自动机由其映射f是否为单值而分为确定的有限自动机DFA和非确定的有限自动机NFA.在非确定的有限自动机NFA中,由于某些状态的转移需从若干个可能的后续状态中进行选择,故一个NFA对符号串的识别就必然是一个试探的过程.这种不确定性给识别过程带来的反复,无疑会影响到FA的工作效率.因此,对于一个非确定的有限自动机NFA M,经常的做法是构造一个确定的有限自动机DFA M’. 有穷自动机(也
编译原理之非确定的自动机NFA确定化为DFA
1.设有 NFA M=( {0,1,2,3}, {a,b},f,0,{3} ),其中 f(0,a)={0,1} f(0,b)={0} f(1,b)={2} f(2,b)={3} 画出状态转换矩阵,状态转换图,并说明该NFA识别的是什么样的语言. 语言为:(a|b)*abb 2.NFA 确定化为 DFA 1.解决多值映射:子集法 1). 上述练习1的NFA 2). 将下图NFA 确定化为 DFA 2.解决空弧:对初态和所有新状态求ε-闭包 1). 图转换为矩阵: 状态转换图: 识别语言为:0
作业八——非确定的自动机NFA确定化为DFA
NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1.根据NFA构造DFA状态转换矩阵 ①确定DFA初态(NFA的所有初态集),字母表 ②从初态出发,经字母表到达的状态集看成一个新状态 ③将新状态添加到DFA状态集 ④重复23步骤,直到没有新的DFA状态 2.画出DFA 3.看NFA和DFA识别的符号串是否一致. 练习: 1.解决多值映射:子集法 1)
第八次——非确定的自动机NFA确定化为DFA
NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1.根据NFA构造DFA状态转换矩阵 ①确定DFA初态(NFA的所有初态集),字母表 ②从初态出发,经字母表到达的状态集看成一个新状态 ③将新状态添加到DFA状态集 ④重复23步骤,直到没有新的DFA状态 2.画出DFA 3.看NFA和DFA识别的符号串是否一致. 练习: 1.解决多值映射:子集法 1)
编译原理:非确定的自动机NFA确定化为DFA
1.设有 NFA M=( {0,1,2,3}, {a,b},f,0,{3} ),其中 f(0,a)={0,1} f(0,b)={0} f(1,b)={2} f(2,b)={3} 画出状态转换矩阵,状态转换图,并说明该NFA识别的是什么样的语言. 解析: a b 0 {0,1} 0 1 2 2 3 3 状态转换图如下: 识别语言为:(a | b)*abb 2.NFA 确定化为 DFA 1.解决多值映射:子集法 1). 上述练习1的NFA 解析: 根据1的NFA构造DFA状态转换矩阵如
第八次-非确定的自动机NFA确定化为DFA
提交作业 NFA 确定化为 DFA 子集法: f(q,a)={q1,q2,…,qn},状态集的子集 将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合. 步骤: 1.根据NFA构造DFA状态转换矩阵 ①确定DFA初态(NFA的所有初态集),字母表 ②从初态出发,经字母表到达的状态集看成一个新状态 ③将新状态添加到DFA状态集 ④重复23步骤,直到没有新的DFA状态 2.画出DFA 3.看NFA和DFA识别的符号串是否一致. 练习: 1.解决多值映射
NFA转化为DFA
NFA(不确定的有穷自动机)转化为DFA(确定的有穷自动机) NFA转换DFA,通常是将带空串的NFA(即:ε-NFA)先转化为不带空串的NFA(即:NFA),然后再转化为DFA. 提示:ε是空串的意思!空串没有任何字符! 这里直接讲将ε-NFA转化为DFA的过程,将NFA转化为DFA的情况类似. 转化的过程总的来说有两大步骤:ε-NFA转化为DFA,以及DFA简化 ε-NFA转化为DFA前件知识 1.对状态图进行改造 增加状态X,Y,使之成为新的唯一的初态和终态,从X引ε弧到原初态节点,从原终
编译原理-NFA转化成DFA
1.假定NFA M=<S,∑,f,S0,F> 对M的状态转换图进行以下改造: ①引进新的初态结点X和终态结点Y, X,Y∈S, 从X到S0中的任意结点连一条ε箭弧,从F中任意结点到Y连一条ε箭弧.(解决初态的唯一性) ②引入新状态对M的状态转换图进行进一步的替换(简化弧上的标记) 2.NFA确定化:子集法(解决弧和转换问题) 设I是S的一个子集 ①J为I中的某个状态经过一条a弧而到达的集合 ②ε-closure(I):I∪{s'|从s∈I出发经过任意条ε弧能到达s'}
正规式转化为DFA
https://www.bilibili.com/video/BV1dj411f7AR?p=50 例题:
NFA转换为等价的DFA
在编译系统中,词法分析阶段是整个编译系统的基础.对于单词的识别,有限自动机FA是一种十分有效的工具.有限自动机由其映射f是否为单值而分为确定的有限自动机DFA和非确定的有限自动机NFA.在非确定的有限自动机NFA中,由于某些状态的转移需从若干个可能的后续状态中进行选择,故一个NFA对符号串的识别就必然是一个试探的过程.这种不确定性给识别过程带来的反复,无疑会影响到FA的工作效率.因此,对于一个非确定的有限自动机NFA M,经常的做法是构造一个确定的有限自动机DFA M’. 有穷自动机(也称有限自
如何将 不确定的有穷自动机(NFA) 转化为 确定的有穷自动机(DFA) 并将DFA最简化
一.从NFA到DFA的转换 例如下图: DFA的每个状态都是一个由NFA中的状态构成的集合,即NFA状态集合的一个子集 r =aa*bb*cc* 二.从带有ε-边的NFA到DFA的转换 r=0*1*2* 三.子集构造法( subset construction) 输入:NFA N 输出:接收同样语言的DFA D 方法:一开始,ε-closure ( s0 )是Dstates 中的唯一状态,且它未加标记: while(在Dstates中有一个未标记状态T ) { 给T加上标记: for(每
自己动手开发编译器(四)利用DFA转换表建立扫描器
上回我们介绍了两种有穷自动机模型——确定性有穷自动机DFA和非确定性有穷自动机,以及从正则表达式经过NFA最终转化为DFA的算法.有些同学表示还是难以理解NFA到底怎么转化为DFA.所以本篇开头时我想再多举一个例子,看看NFA转化为DFA之后到底是什么样.首先我们看下面的NFA,它是从一组词法分析所用的正则表达式转换而来的.这个NFA合并了IF.ID.NUM.error这四个单词的NFA.因此,它的四个接受状态分别代表遇到了四种不同的单词. 用上一篇学到的方法,我们需要求出一个DFA,它的每个状
自动构造词法分析器的步骤——正规式转换为最小化DFA
正规式-->最小化DFA 1.先把正则式-->NFA(非确定有穷自动机) 涉及一系列分解规则 2.再把NFA通过"子集构造法"-->DFA 通过子集构造法将NFA转化为DFA 将表里的变量名用比较简单的符号代替(最好是在进行构造的时候顺手在草稿纸上标记好,方便后面的工作) 对照上面的表,画出DFA的状态转换图 图中0,1,2,3,4,5都是终态,因为他们的集合里都包含了最初的终态"数字9". 3.再把DFA通过"分割法"进行最小
NFA转DFA - json数字识别
json的主页上,提供了number类型的符号识别过程,如下: 图片引用:http://www.json.org/json-zh.html 实际上这张图片表示的是一个状态机,只是状态没有标出来.因为这个状态机上存在ε转换,所以它是一个NFA(不确定有限自动机).ε转换也即不需要输入串就能进行的转换,例如从开始状态到0之前的状态.而我们进行识别的时候,使用DFA(确定有穷自动机)会简单方便得多.所以首先应该将这个NFA转成DFA. 首先把这个NFA规范一下,写成状态与箭头的形式: NFA转DF
利用子集构造法实现NFA到DFA的转换
概述 NFA非有穷自动机,即当前状态识别某个转换条件后到达的后继状态不唯一,这种自动机不便机械实现,而DFA是确定有限状态的自动机,它的状态转换的条件是确定的,且状态数目往往少于NFA,所以DFA能够比较方便的机械实现且识别能力方面也和NFA相当.本次实验采用子集构造法来实现不带空弧的由NFA到DFA的转换. 子集构造法的算法如下: 设NFA为M=(K,Σ,f,S0,Z),则构造相应的DFA M′=(Q,Σ,f′,I0,F)①取I0=S0:②对于状态集Q中任一尚未标记的状态qi={Si1,Si
编译原理-NFA构造DFA
本题摘自北邮的编译原理与技术. 首先,根据此图构造状态转换表 表中第一列第一行表示从第一个符号B通过任意个空转换能到达的节点,Ia表示由此行的状态数组({B,5,1}可以看作0状态)经过一个a可以到达的节点,同理,Ib表示由状态数组经过一个b可以到达的节点. 当然,有些人可能觉得{B,5,1}和{5,1,3}看作两个状态不合理,他们之间不是有交集嘛,实际上他们之间并无交集,因为输入a后,{B,5,1}能到达的新节点是3,之所以要写成{5,1,3},可能是要兼顾逻辑吧>_> 再仔细观察第一行,既
NFA/DFA算法
1.问题概述 随着计算机语言的结构越来越复杂,为了开发优秀的编译器,人们已经渐渐感到将词 法分析独立出来做研究的重要性.不过词法分析器的作用却不限于此.回想一下我们的老师刚刚开始向我们讲述程序设计的时候,总是会出一道题目:给出一个填入 了四则运算式子的字符串,写程序计算该式子的结果.除此之外,我们有时候建立了比较复杂的配置文件,譬如XML的时候,分析器首先也要对该文件进行词法分 析,把整个字符串断成了一个一个比较短小的记号(指的是具有某种属性的字符串),之后才进行结构上的分析.再者,在实现某种控
什么是NFA(不确定的有穷自动机)和DFA(确定的有穷自动机)
本节知识点是<编译原理>第三章-词法分析,学习参考教材为清华大学出版社<编译原理>第三版: 前情提要: 字母表∑1和∑2的乘积( product): ∑1∑2 ={ab|a ∈∑1, b ∈ ∑2} 例: {0, 1} {a, b} ={0a, 0b, 1a, 1b} 字母表∑的n次幂( power):长度为n的符号串构成的集合 ∑0 ={ ε } ∑n =∑n-1 ∑ , n ≥ 例: {0, 1}3 ={0, 1} {0, 1} {0, 1}={000, 001, 010, 0
C# 词法分析器(五)转换 DFA
系列导航 (一)词法分析介绍 (二)输入缓冲和代码定位 (三)正则表达式 (四)构造 NFA (五)转换 DFA (六)构造词法分析器 (七)总结 在上一篇文章中,已经得到了与正则表达式等价的 NFA,本篇文章会说明如何从 NFA 转换为 DFA,以及对 DFA 和字符类进行化简. 一.DFA 的表示 DFA 的表示与 NFA 比较类似,不过要简单的多,只需要一个添加新状态的方法即可.Dfa 类的代码如下所示: namespace Cyjb.Compilers.Lexers { class Df
热门专题
pt921g支持多少兆
@using 在c# 5 不可用
java 指定运行目录
python获取毫秒级时间
qt显示一对多关系视图
Hive在windows端的图形化连接工具
R 去除行名为na的行
idea提示没有匹配的验证协议
火狐驱动程序下载地址
linux usb触摸屏设置
yocto 打patch
openwrt 浏览器管理打不开 不安全
ubuntu打印前几行
将word的文档机构图生成html
qwidget样式表 不影响子控件
webstorm卡、闪退以及win10中
swiper.slideTo()调用监测页数
html如何在方法中获取请求路径
c#如何实现网页填表
fpga adc采样单载波