参考:Familia的Github项目地址.百度NLP专栏介绍 Familia 开源项目包含文档主题推断工具.语义匹配计算工具以及基于工业级语料训练的三种主题模型:Latent Dirichlet Allocation(LDA).SentenceLDA 和Topical Word Embedding(TWE). 支持用户以“拿来即用”的方式进行文本分类.文本聚类.个性化推荐等多种场景的调研和应用.考虑到主题模型训练成本较高以及开源主题模型资源有限的现状,我们会陆续开放基于工业级语料训练的多个垂直
http://www.biostatistic.net/thread-94974-1-1.html http://www.doc88.com/p-9843685205530.html http://wenku.baidu.com/link?url=GH_4-OaW2ACIy0iyNvZ298_rcR4Q_u5OjGNrgQyMozN2JlmmZSwWnqkMpAw6zzY9aiOGj5Gie0YWh1tPvEsvPmuYcT0R18bXgMyY_57SXh7 面向网络评论的观点主题识别研究 h
https://www.jianshu.com/p/9fe0a7004560 一.简单介绍 LSA和传统向量空间模型(vector space model)一样使用向量来表示词(terms)和文档(documents),并通过向量间的关系(如夹角)来判断词及文档间的关系:不同的是,LSA 将词和文档映射到潜在语义空间,从而去除了原始向量空间中的一些“噪音”,提高了信息检索的精确度. 二.文本挖掘的两个方面应用 (1)分类: a.将词汇表中的字词按意思归类(比如将各种体育运动的名称都归成一类) b