#多在编译器里尝试新操作 import numpy as np for i range(100): eval1 = {"A": ''"} eval2 = {"A": [[1], [2]]} if i%2 == 0: ar = np.array(eval1['A']) #此时打印ar,里面什么都没有 else: ar = np.array(eval2["A"]) #此时打印ar,是一个二维数组 if ar.shape == (): #不能
虽然numpy数组中有argmax的函数可以获得数组的最大值的索引,但该函数获得的是numpy数组平铺后的索引,也就是一维索引.那么要怎样才能获得二维索引呢?实现很简单,比如我下面的代码: import numpy as np import math a = np.array([[1, 2, 3], [4, 5, 6]]) m, n = a.shape index = int(a.argmax()) x = int(index / n) y = index % n print(x, y) >>
(Numpy中ndarray和array的区别是什么?我在哪儿能够找到numpy中相应的实现?) 答:Well, np.array is just a convenience function to create an ndarray, it is not a class itself. (嗯,np.array只是一个便捷的函数,用来创建一个ndarray,它本身不是一个类) You can also create an array using np.ndarray, but it is not
np array转json import numpy as np import codecs, json a = np.arange().reshape(,) # a by array b = a.tolist() # nested lists with same data, indices file_path = "/path.json" ## your path variable json.dump(b, codecs.open(file_path, ) ### this save