np.linalg.norm() computes the norm of a NumPy array according to an order, ord, which specifies the metric by which the norm takes. For example, if we are given an array [
转自:https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.linalg.html 1.分解 //其中我觉得可以的就是svd奇异值分解吧,虽然并不知道数学原理 np.linalg.svd(a, full_matrices=1, compute_uv=1) a是要分解的(M,N)array; full_matrices : bool, optional If True (default), u and v have the shape
AFSIndividual.py import numpy as np import ObjFunction import copy class AFSIndividual: """class for AFSIndividual""" def __init__(self, vardim, bound): ''' vardim: dimension of variables bound: boundaries of variables ''' se