Description 求解模线性方程组, \(m_i\) 不互质. Sol 扩展欧几里得+中国剩余定理. 首先两两合并跟上篇博文一样. 每次通解就是每次增加两个数的最小公倍数,这对取模任意一个数都是0. 伪代码如下 M = m[1], R = r[1] For i = 2 .. N d = gcd(M, m[i]) c = r[i] - R If (c mod d) Then // 无解的情况 Return -1 End If (k1, k2) = extend_gcd(M / d, m[i]
Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 8476 Accepted: 2554 Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following: Choose k
题目 A group took a trip on a bus, at 3 per child and 3.20 per adult for a total of 118.40. They took the train back at 3.50 per child and 3.60 per adult for a total of 135.20. How many children, and how many adults? 求解过程 设有x1个children,x2个adults,线性方程组为
三对角线性方程组(tridiagonal systems of equations) 三对角线性方程组,对于熟悉数值分析的同学来说,并不陌生,它经常出现在微分方程的数值求解和三次样条函数的插值问题中.三对角线性方程组可描述为以下方程组: \[a_{i}x_{i-1}+b_{i}x_{i}+c_{i}x_{i+1}=d_{i}\] 其中\(1\leq i \leq n, a_{1}=0, c_{n}=0.\) 以上方程组写成矩阵形式为\(Ax=d\),即: \[ {\begin{bmatrix