Map (最大后验) 在贝叶斯统计学中,最大后验(Maximum A Posteriori,MAP)估计可以利用经验数据获得对未观测量的点态估计.它与Fisher的最大似然估计(Maximum Likelihood,ML)方法相近,不同的是它扩充了优化的目标函数,其中融合了预估计量的先验分布信息,所以最大后验估计可以看作是正则化(regularized)的最大似然估计. 中文名 最大后验 外文名 Maximum A Posteriori 应用学科 贝叶斯统计学 假设我们需要根据观察数据x估计
多目标跟踪方法:deep-sort deep_sort Multitarget tracking data association 读'Simple Online and Realtime Tracking with a Deep Association Metric, arXiv:1703.07402v1 ' 总结 前言 这篇文章依然属于tracking-by-detection 类,其在匹配detections时使用的是传统的匈牙利算法.文章中需要注意的几点包括: 在计算detections
常常会碰到各种各样时间序列预测问题,如商场人流量的预测.商品价格的预测.股价的预测,等等.TensorFlow新引入了一个TensorFlow Time Series库(以下简称为TFTS),它可以帮助在TensorFlow中快速搭建高性能的时间序列预测系统,并提供包括AR.LSTM在内的多个模型. 时间序列问题 一般而言,时间序列数据抽象为两部分:观察的时间点和观察的值(以商品价格为例,某年一月的价格为120元,二月的价格为130元,三月的价格为135元,四月的价格为132元.那么观察的时间点
Kalman滤波简介 Kalman滤波是一种线性滤波与预测方法,原文为:A New Approach to Linear Filtering and Prediction Problems.文章推导很复杂,看了一半就看不下去了,既然不能透彻理解其原理,但总可以通过实验来理解其具体的使用方法. Kalman滤波分为2个步骤,预测(predict)和校正(correct).预测是基于上一时刻状态估计当前时刻状态,而校正则是综合当前时刻的估计状态与观测状态,估计出最优的状态.预测与校正的过程如下: 预
EKF relies on a linearisation of the evolution and observation functions which are good approximations of the original functions if these functions are close to linear. The state-space formulation of EKF reads : Non-linear evolution and observation f