Neural Machine Translation Welcome to your first programming assignment for this week! You will build a Neural Machine Translation (NMT) model to translate human readable dates ("25th of June, 2009") into machine readable dates ("2009-06-25
Sequence-to-sequence Framework A Neural Attention Model for Abstractive Sentence Summarization Alexander M. Rush et al., Facebook AI Research/Harvard EMNLP2015 sentence level seq2seq模型在2014年提出,这篇论文是将seq2seq模型应用在abstractive summarization任务上比较早期的论文.同组的
今天学习的with语句,with的表达形式如下:据说context必须是上下文管理器,这我就懵比了,啥玩意啊... with语句的表达形式: with context as var: block context 可以是任意表达式: as VAR 是可选的.其一般的执行过程是这样的: 1.计算 context ,并获取一个上下文管理器. 2.上下文管理器的 __exit()__ 方法被保存起来用于之后的调用. 3.调用上下文管理器的 __enter()__ 方法. 4.如果 with 表达式
目录 简介 经典模型概述 Model 1: Attentive Reader and Impatient Reader Model 2: Attentive Sum Reader Model 3: Stanford Attentive Reader Model 4: AOA Reader Model 5: Match-LSTM and Answering Point Match-LSTM Pointer Net Match-LSTM and Answering Point Model 5: Bi
目录 简介 经典模型概述 Model 1: Attentive Reader and Impatient Reader Attentive Reader Impatient Reader Model 2: Attentive Sum Reader Model 3: Stanford Attentive Reader Model 4: AOA Reader Model 5: Match-LSTM and Answering Point Match-LSTM Pointer Net Match-LS
decoder.py """ 实现解码器 """ import heapq import torch.nn as nn import config import torch import torch.nn.functional as F import numpy as np import random from chatbot.attention import Attention class Decoder(nn.Module): def __i