首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
opencv 灰度图片相似度
2024-11-04
深入学习OpenCV中图像灰度化原理,图像相似度的算法
最近一段时间学习并做的都是对图像进行处理,其实自己也是新手,各种尝试,所以我这个门外汉想总结一下自己学习的东西,图像处理的流程.但是动起笔来想总结,一下却不知道自己要写什么,那就把自己做过的相似图片搜索的流程整理一下,想到什么说什么吧. 首先在进行图片灰度化处理之前,我觉得有必要了解一下为什么要进行灰度化处理. 图像灰度化的目的是什么? 将彩色图像转化为灰度图像的过程是图像的灰度化处理.彩色图像中的每个像素的颜色由R,G,B三个分量决定,而每个分量中可取值0-255,这样一个像素点可以有1600
opencv学习笔记(六)直方图比较图片相似度
opencv学习笔记(六)直方图比较图片相似度 opencv提供了API来比较图片的相似程度,使我们很简单的就能对2个图片进行比较,这就是直方图的比较,直方图英文是histogram, 原理就是就是将图片转换成直方图,然后对直方图进行比较,在某些程度,真实地反映了图片的相似度. 代码如下: #include <iostream> #include <cv.h> #include <highgui.h> using namespace std; using namespa
iOS,OC,图片相似度比较,图片指纹
上周,正在忙,突然有个同学找我帮忙,说有个需求:图片相似度比较. 网上搜了一下,感觉不是很难,就写了下,这里分享给需要的小伙伴. 首先,本次采用的是OpenCV,图片哈希值: 先说一下基本思路: 1. 缩小尺寸:将图像缩小到8*8的尺寸,总共64个像素.这一步的作用是去除图像的细节,只保留结构/明暗等基本信息,摒弃不同尺寸/比例带来的图像差异: 注:实际操作时,采取了两种尺寸作对比(10*10,100*100)尺寸再大的话就会性能影响就会较大了,我实现了两种,目的是为了展示怎么设定不同
用 Python 和 OpenCV 检测图片上的条形码
用 Python 和 OpenCV 检测图片上的的条形码 这篇博文的目的是应用计算机视觉和图像处理技术,展示一个条形码检测的基本实现.我所实现的算法本质上基于StackOverflow 上的这个问题,浏览代码之后,我提供了一些对原始算法的更新和改进. 首先需要留意的是,这个算法并不是对所有条形码有效,但会给你基本的关于应用什么类型的技术的直觉. 假设我们要检测下图中的条形码: 图1:包含条形码的示例图片 现在让我们开始写点代码,新建一个文件,命名为detect_barcode.py,打开并编
基于2-channel network的图片相似度判别
一.相关理论 本篇博文主要讲解2015年CVPR的一篇关于图像相似度计算的文章:<Learning to Compare Image Patches via Convolutional Neural Networks>,本篇文章对经典的算法Siamese Networks 做了改进.学习这篇paper的算法,需要熟悉Siamese Networks(经典老文献<Signature Verification Using a Siamese Time Delay Neural Network
atitit.图片相似度与图片查找的设计 获取图片指纹
atitit.图片相似度与图片查找的设计. 1. 两张图片相似算法 1 2. DCT(离散余弦变换(DiscreteCosineTransform))编辑 2 3. 编辑距离编辑 3 4. Java数字图像处理基础知识 - 必读 3 5. 汉明距离 4 5.1. 目录 4 5.2. 1介绍 5 6. Attilax框架实现 5 6.1. 获取图片指纹 5 6.2. 获取图像不相似度 6 7. 参考 6 1. 两张图片相似算法 ,原理非常简单易懂.我们可以用一个快速算法,就达到基本的效果. 这
Android实现图片相似度
Android实现图片相似度 最近公司有一个需求,就是希望能判断用户提交的照片是否是身份证的正面或者反面.可以通过预设一张拍摄清晰的身份证正面或者反面,来对比是否相似,那么问题就转化为如何计算两张图片相似度.找到一篇阮一峰老师当年的博客 很有启发,于是根据他说的每一步用Android里的方法来实现. 第一步,缩小尺寸. 将图片缩小到8x8的尺寸,总共64个像素.这一步的作用是去除图片的细节,只保留结构.明暗等基本信息,摒弃不同尺寸.比例带来的图片差异. Bitmap bitmap8 = Thum
Atitit 图像处理 灰度图片 灰度化的原理与实现
Atitit 图像处理 灰度图片 灰度化的原理与实现 24位彩色图与8位灰度图 首先要先介绍一下24位彩色图像,在一个24位彩色图像中,每个像素由三个字节表示,通常表示为RGB.通常,许多24位彩色图像存储为32位图像,每个像素多余的字节存储为一个alpha值,表现有特殊影响的信息[1]. 在RGB模型中,如果R=G=B时,则彩色表示一种灰度颜色,其中R=G=B的值叫灰度值,因此,灰度图像每个像素只需一个字节存放灰度值(又称强度值.亮度值),灰度范围为0-255[2].这样就得到一幅图片
Android OpenCV实现图片叠加,水印
关于如何用纯OpenCV实现图片叠加的例子实在是太少,太多的是使用 C++,JNI实现的,如果要用C++的话,我们为啥不转行做C++ 下面的例子基于 Android JavaCV 实现了在im_beauty 美女图片上 添加im_flower3 小花图片 并显示 需要在res/drawable目录下 放两个文件 im_beauty, im_flower3 注意im_flower3一定要比im_beauty图片尺寸要下小 package com.KyleOpencvImageAdd; impor
python 对比图片相似度
最近appium的使用越来越广泛了,对于测试本身而言,断言同样是很重要的,没有准确的断言那么就根本就不能称之为完整的测试了.那么目前先从最简单的截图对比来看.我这里分享下python的图片相似度的代码.目前我自己工作中全部是使用python的PIL库,绝对很赞! #sudo pip install PIL def pil_image_similarity(filepath1, filepath2): from PIL import Image import math import operato
使用 opencv 将图片压缩到指定文件尺寸
前言 图片压缩应用很广泛,如生成缩略图等.前期我在进行图片处理的过程中碰到了一个问题,就是如何将图片压缩到指定尺寸,此处尺寸指的是生成图片文件的大小. 我使用 opencv 进行图片处理,于是想着直接使用 opencv 进行图片压缩处理, opencv 本身包含了压缩到指定像素大小的方法,奈何寻找了很多方法均不能压缩到指定文件尺寸,于是自己在思考后写出了此方法.本文使用python语言. 一. opencv 常规使用 opencv 无需多言,做过图片处理的人应该都知道此类库,下面我介绍一些常用方
c语言数字图像处理(一):bmp图片格式及灰度图片转换
本篇文章首先介绍了bmp图片格式,主要参考wiki上的内容,包括bmp文件的存储方式,对于一些常见的bmp文件格式都给了例子,并且对8位 16位RGB555 16位RGB565格式的bmp文件进行了简单分析,最后的代码可以将8位,16位,24位,32位色彩深度的bmp文件转化位8位灰度图片,用作后续文章中算法的测试图片. Bmp file structure Bitmap file header DIB header (bitmap information header) compression
通过CSS3实现:鼠标悬停图片360度旋转效果
效果很好玩,代码很简单: 效果: 鼠标放置在图片上:360度顺时针旋转 鼠标离开图片:图片260度逆时针旋转 只要将下面代码拷贝过去,并将图片改成你想要的就可以看到效果 <!doctype html> <html> <head> <meta charset="utf-8"> <title>鼠标悬停图片360度旋转效果</title> <style> .xwcms { width: 220px; heig
C#图片处理之:旋转图片90度的整数倍
原文:C#图片处理之:旋转图片90度的整数倍 旋转图片90的整数倍那真是太简单了. public static Bitmap KiRotate90(Bitmap img) ...{ try ...{ img.RotateFlip(RotateFlipType.Rotate90FlipNone); return img;
原生Js封装的产品图片360度展示
挺简单的一段程序,但是效果不错: 1.把需要展示的36张图片先预加载到浏览器缓存里 2.给展示图片的div添加方法 3.通过鼠标左右移动的像素转换图片 在线效果预览:http://jsfiddle.net/dtdxrk/SnSGj/embedded/result/ <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content="text/html; char
opencv的图片的灰度处理‘
#include "stdafx.h" //实现将彩色图片转换成灰度图 int _tmain(int argc, _TCHAR* argv[]){ IplImage *image; //初始化保存原始图像 IplImage *result; //保存灰度图 image = cvLoadImage("图片3.jpg",-1); int channel =-1; int depth =image->depth; CvSize sz; sz.width =image
OpenCV进行图像相似度对比的几种办法
转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/43853435, 来自:shiter编写程序的艺术 对计算图像相似度的方法,本文做了如下总结,主要有三种办法: 1.PSNR峰值信噪比 PSNR(Peak Signal to Noise Ratio),一种全参考的图像质量评价指标. 简介:https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio PSNR是最普遍和使用最为广
python3+openCV实现图片的人脸人眼检测,原理+参数+源代码
上学时候用matlab学过一些图像处理的基础知识,当时课程作业是用haar实现人脸检测 but当时是心思根本不在图像处理上,so找了个同学帮忙做的,自己没上心 然鹅天道好轮回,现在捡起来了原来的算法一脸懵逼,自己挖的坑再深也得跳下去啊! 先上一张经典的lena图镇场子! 流程图: 读取一张图片→转灰度图→人眼/人脸检测→标识出来→显示/保存结果 其中,重中之重就是怎样进行检测?下面主要讲一下openCV中现成的一种算法——Haar 算法详解请参考https://blog.csdn.net/pla
opencv实现图片缩放
源码 #include <iostream> #include <opencv2/core/core.hpp> #include <opencv2/imgproc/imgproc.hpp> #include <opencv2/highgui/highgui.hpp> #include<opencv2/opencv.hpp> using namespace std; using namespace cv; int main() { // cvLoa
OpenCV2学习笔记(十四):基于OpenCV卡通图片处理
得知OpenCV有一段时间.除了研究的各种算法的内容.除了从备用,据导游书籍和资料,尝试结合链接的图像处理算法和日常生活,第一桌面上(随着摄像头)完成了一系列的视频流处理功能.开发平台Qt5.3.2+OpenCV2.4.9. 本次试验实现的功能主要有: 调用摄像头捕获视频流: 将帧图像转换为素描效果图片: 将帧图像卡通化处理: 简单地生成"怪物"形象: 人脸肤色变换. 本节全部的算法均由类cartoon中的函数cartoonTransform()来实现: // Frame:输入每一帧图
用 Python 和 OpenCV 检测图片上的条形码(转载)
原文地址:http://python.jobbole.com/80448/ 假设我们要检测下图中的条形码: # load the image and convert it to grayscale 12 image = cv2.imread(args["image"]) 13 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 14 15 # compute the Scharr gradient magnitude representatio
热门专题
el检测不到lombok的getset
Qt 含多个0的char * 字符串 转成BASE64
sql server日统计
显示xy数据不在一个图层
修复系统出现findstr不是内部或外部命令
xshell 5 高版本转低版本 提示
百度地图Referer白名单
printStream用法
corelDRAWX4在Win10系统下菜单显示不出来
excel怎么看一列的数据在另一列是否有
drools drl 例子
视频播放器和音频播放器都是html5里面的
vbs布尔型变量的变量
R语言如何将数据集按照一定条件分成两个
unity事件系列有哪些
hosts文件已经没用
foxmail绑定163报密码错误
小程序的innerHTML
虚拟电脑的虚拟磁盘文件vmdk
pivottable的作用