目录 Pytorch Leture 05: Linear Rregression in the Pytorch Way Logistic Regression 逻辑回归 - 二分类 Lecture07: How to make netural network wide and deep ? Lecture 08: Pytorch DataLoader Lecture 09: softmax Classifier part one part two : real problem - MNIST i
目录 Pytorch Leture 05: Linear Rregression in the Pytorch Way Logistic Regression 逻辑回归 - 二分类 Lecture07: How to make netural network wide and deep ? Lecture 08: Pytorch DataLoader Lecture 09: softmax Classifier part one part two : real problem - MNIST i
通过https://github.com/amdegroot/ssd.pytorch,结合论文https://arxiv.org/abs/1512.02325来理解ssd. ssd由三部分组成: base extra predict base原论文里用的是vgg16去掉全连接层. base + extra完成特征提取的功能.得到不同size的feature map,基于这些feature maps,我们再用不同的卷积核去卷积,分别完成类别预测和坐标预测. 基础特征提取网络 特征提取网络由两部分组