上一节中,我们利用了预训练的VGG网络卷积基,来简单的提取了图像的特征,并用这些特征作为输入,训练了一个小分类器. 这种方法好处在于简单粗暴,特征提取部分的卷积基不需要训练.但缺点在于,一是别人的模型是针对具体的任务训练的,里面提取到的特征不一定适合自己的任务:二是无法使用图像增强的方法进行端到端的训练. 因此,更为常用的一种方法是预训练模型修剪 + 微调,好处是可以根据自己任务需要,将预训练的网络和自定义网络进行一定的融合:此外还可以使用图像增强的方式进行端到端的训练.仍然以VGG16为例,过