resultset 对象获取行字段数据时报:java.sql.SQLException: Column 'id' not found. 代码: String sql="SELECT d.content,c.name AS categoryName FROM news_detail d,news_category c WHERE d.categoryId=c.id"; Object[] params ={}; System.out.println(this.executeQuery(sq
在SQL语言中去重是一件相当简单的事情,面对一个表(也可以称之为DataFrame)我们对数据进行去重只需要GROUP BY 就好. select custId,applyNo from tmp.online_service_startloan group by custId,applyNo 1.DataFrame去重 但是对于pandas的DataFrame格式就比较麻烦,我看了其他博客优化了如下三种方案. 我们先引入数据集: import pandas as pd data=pd.read_
1.创建 1.1 标准格式创建 DataFrame创建方法有很多,常用基本格式是:DataFrame 构造器参数:DataFrame(data=[],index=[],coloumns=[]) In [272]: df2=DataFrame(np.arange(16).reshape((4,4)),index=['a','b','c','d'],columns=['one','two','three','four']) In [273]: df2 Out[273]: one two three
方法一:使用在T-SQL的编程中 分配一个列号码,以COL1,COL2组合来分区排序,删除DATABASE重复的行(重复数据),只保留一行 // COL1,COL2是数据库DATABASE的栏位 delete a from (select COL1,COL2,row_number() over (partition by COL1,COL2 order by COL1) as rn from DATABASE) a where a.rn>1 方法二:使用在ETL中 select distant
在 views.py 中添加函数 向数据库中添加数据 def add_persons(request): for i in range(15): person = Person() flag = random.randrange(100) person.p_name = "Hany_ %d"%(i) person.p_age = flag person.p_sex = flag%2 person.save() return HttpResponse("批量添加成功"
pandas.DataFrame.join 自己弄了很久,一看官网.感觉自己宛如智障.不要脸了,直接抄 DataFrame.join(other, on=None, how='left', lsuffix='', rsuffix='', sort=False) Join columns with other DataFrame either on index or on a key column. Efficiently Join multiple DataFrame objects by in