pandas稍微比numpy处理数据起来还是要慢一点,pandas呢是numpy的升级版,可以说各有所长,numpy的优势是用来处理矩阵,而pandas的优势是处理数表. 1. Series 线性数表 serier一个线性数表,所谓线性数表就是他的数据比较单一,没有那么多的分类要么行为1要么列为1 通常serier我们用来自动生成数表的列啊,行啊什么的 import pandas as pd import numpy as np s = pd.Series([1,3,6,np.nan,44,1]
本文是对pandas官方网站上<10 Minutes to pandas>的一个简单的翻译,原文在这里.这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook .习惯上,我们会按下面格式引入所需要的包: In [1]: import numpy as np In [2]: import pandas as pd In [3]: import matplotlib.pyplot as plt 一.创建对象 可以通过 Data Structure Intro Setion 来
原文:http://pandas.pydata.org/pandas-docs/stable/10min.html 译者:ChaoSimple 校对:飞龙 官方网站上<10 Minutes to pandas>的一个简单的翻译,原文在这里.这篇文章是对 pandas 的一个简单的介绍,详细的介绍请参考:秘籍 .习惯上,我们会按下面格式引入所需要的包: In [1]: import pandas as pd In [2]: import numpy as np In [3]: import ma
怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 这一部分主要学习pandas中基于前面两种数据结构的基本操作. 设有DataFrame结果的数据a如下所示: a b c one 4 1 1 two 6 2 0 three 6 1 6 一.查看数据(查看对象的方法对于Series来说同样适用) 1.查看DataFrame前xx行或后xx行a=DataFrame(data);a.head(6)表示显示前6行数据,若head()