首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
pandas库#describe()方法数据统计
2024-09-07
数据科学:Pandas 和 Series 的 describe() 方法
一.Pandas 和 Series 的 describe() 方法 1)功能 功能:对数据中每一列数进行统计分析:(以“列”为单位进行统计分析) 默认只先对“number”的列进行统计分析: 一列数据全是“number” count:一列的元素个数: mean:一列数据的平均值: std:一列数据的均方差:(方差的算术平方根,反映一个数据集的离散程度:越大,数据间的差异越大,数据集中数据的离散程度越高:越小,数据间的大小差异越小,数据集中的数据离散程度越低) min:一列数据中的最小值: max
利用pandas库中的read_html方法快速抓取网页中常见的表格型数据
本文转载自:https://www.makcyun.top/web_scraping_withpython2.html 需要学习的地方: (1)read_html的用法 作用:快速获取在html中页面中table格式的数据 (2)to_sql的用法 将获得的DataFrame数据写入数据表中 (3)使用urlencode构造所需的url参数 摘要: 我们平常在浏览网页中会遇到一些表格型的数据信息,除了表格本身体现的内容以外,你可能想透过表格再更进一步地进行汇总.筛选.处理分析等操作从而得到更多有
Python的工具包[1] -> pandas数据预处理 -> pandas 库及使用总结
pandas数据预处理 / pandas data pre-processing 目录 关于 pandas pandas 库 pandas 基本操作 pandas 计算 pandas 的 Series pandas 常用函数 补充内容 1 关于pandas / About pandas Pandas起源 Python Data Analysis Library或pandas是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效
Python数据分析Pandas库方法简介
Pandas 入门 Pandas简介 背景:pandas是一个Python包,提供快速,灵活和富有表现力的数据结构,旨在使“关系”或“标记”数据的使用既简单又直观.它旨在成为在Python中进行实际,真实世界数据分析的基础高级构建块.此外,它还有更广泛的目标,即成为任何语言中最强大,最灵活的开源数据分析/操作工具.它已朝着这个目标迈进 pandas组成 = 数据面板+数据分析工具 pandas把数据分为3类 一位矩阵:Series 强大在可以存储任意类型数据 二维矩阵: DataFrame 三维
利用 pandas库读取excel表格数据
利用 pandas库读取excel表格数据 初入IT行业,愿与大家一起学习,共同进步,有问题请指出!! 还在为数据读取而头疼呢,请看下方简洁介绍: 数据来源为国家统计局网站下载: 具体方法 代码: import pandas as pddf = pd.read_excel('quanguojingji10nian.xls')#现在Excel表格与py代码放在一个文件夹里x=df['指标']#读取第一列数据print(x);#把'指标换成其他列地列名,就能读其他列' 结果: 读出x列的结果可以
爬虫 Http请求,urllib2获取数据,第三方库requests获取数据,BeautifulSoup处理数据,使用Chrome浏览器开发者工具显示检查网页源代码,json模块的dumps,loads,dump,load方法介绍
爬虫 Http请求,urllib2获取数据,第三方库requests获取数据,BeautifulSoup处理数据,使用Chrome浏览器开发者工具显示检查网页源代码,json模块的dumps,loads,dump,load方法介绍 伪装浏览器.IP限制.登陆.验证码(CAPTCHA) 1.爬虫 Http请求和Chrome 访问一个网页http://kaoshi.edu.sina.com.cn/college/scorelist?tab=batch&wl=1&local=2&batc
【Python学习笔记】Pandas库之DataFrame
1 简介 DataFrame是Python中Pandas库中的一种数据结构,它类似excel,是一种二维表. 或许说它可能有点像matlab的矩阵,但是matlab的矩阵只能放数值型值(当然matlab也可以用cell存放多类型数据),DataFrame的单元格可以存放数值.字符串等,这和excel表很像. 同时DataFrame可以设置列名columns与行名index,可以通过像matlab一样通过位置获取数据也可以通过列名和行名定位,具体方法在后面细说. 2 创建DataFrame 首先声
Python之Pandas库常用函数大全(含注释)
前言:本博文摘抄自中国慕课大学上的课程<Python数据分析与展示>,推荐刚入门的同学去学习,这是非常好的入门视频. 继续一个新的库,Pandas库.Pandas库围绕Series类型和DataFrame类型这两种数据结构,提供了一种高效便捷的数据处理方式. - Series 类型创建 Series类型是一组数据及与之相关的数据索引组成 自动索引: a = pd.Series([9, 8, 7, 6]) 构造一个Series对象a 自定义索引: a = pd.Series([9, 8, 7,
Pandas 库之 DataFrame
How to use DataFrame ? 简介 创建 DataFrame 查看与筛选数据:行列选取 DataFrame 数据操作:增删改 一.About DataFrame DataFrame 是 Python 中 Pandas 库中的一种数据结构,是一种二维表.它类似 excel,或许说它可能有点像 matlab 的矩阵,但是 matlab 的矩阵只能放数值型值(当然 matlab 也可以用 cell 存放多类型数据),DataFrame 的单元格可以存放数值.字符串等,这就和 excel
Pandas库之DataFrame
Pandas库之DataFrame 1 简介 DataFrame是Python中Pandas库中的一种数据结构,它类似excel,是一种二维表. 或许说它可能有点像matlab的矩阵,但是matlab的矩阵只能放数值型值(当然matlab也可以用cell存放多类型数据),DataFrame的单元格可以存放数值.字符串等,这和excel表很像. 同时DataFrame可以设置列名columns与行名index,可以通过像matlab一样通过位置获取数据也可以通过列名和行名定位,具体方法在后面细说.
Python pandas库159个常用方法使用说明
Pandas库专为数据分析而设计,它是使Python成为强大而高效的数据分析环境的重要因素. 一.Pandas数据结构 1.import pandas as pd import numpy as np import matplotlib.pyplot as plt 2.S1=pd.Series([‘a’,’b’,’c’]) series是一组数据与一组索引(行索引)组成的数据结构 3.S1=pd.Series([‘a’,’b’,’c’],index=(1,3,4)) 指定索引 4.S1=pd.S
Python 基础教程 —— Pandas 库常用方法实例说明
目录 1. 常用方法 pandas.Series 2. pandas.DataFrame ([data],[index]) 根据行建立数据 3. pandas.DataFrame ({dic}) 根据列建立数据 4. pandas.DataFrame([list])根据数据建立列数据 5. loc / iloc 数据筛选 6. 多级行索引 7. 使用 pandas.MultiIndex 显式创建多级行索引 8. 多级行索引的升维及降维 9. 在DataFrame 中添加列 insert 10
利用python进行数据分析之pandas库的应用(二)
本节介绍Series和DataFrame中的数据的基本手段 重新索引 pandas对象的一个重要方法就是reindex,作用是创建一个适应新索引的新对象 >>> from pandas import Series,DataFrame >>> obj=Series([4.5,7.2,-5.3,3.6],index=['d','b','a','c']) >>> obj d 4.5 b 7.2 a -5.3 c 3.6 dtype: float64#rein
使用Python Pandas处理亿级数据
在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章<别老扯什么Hadoop了,你的数据根本不够大>指出:只有在超过5TB数据量的规模下,Hadoop才是一个合理的技术选择.这次拿到近亿条日志数据,千万级数据已经是关系型数据库的查询分析瓶颈,之前使用过Hadoop对大量文本进行分类,这次决定采用Python来处理数据: 硬件环境 CPU:3.5 GHz Intel Core i7 内存:32 GB HDDR 3 1600 MHz 硬盘:3 TB Fusion Drive 数据分析
使用第三方库连接MySql数据库:PyMysql库和Pandas库
使用PyMysql库和Pandas库链接Mysql 1 系统环境 系统版本:Win10 64位 Mysql版本: 8.0.15 MySQL Community Server - GPL pymysql版本: 0.7.9 pandas版本:0.20.3 sqlalchemy版本:1.1.13 代码编辑IDE: Jupyter1.0.0 2 使用PyMysql库链接Mysql 直接导入Pymysql库: import pymysql 然后建立数据库连接: conn = pymysql.connect
python pandas库——pivot使用心得
python pandas库——pivot使用心得 2017年12月14日 17:07:06 阅读数:364 最近在做基于python的数据分析工作,引用第三方数据分析库——pandas(version 0.16). 在做数据统计二维表转换的时候走了不少弯路,发现pivot()这个方法可以解决很多问题,让我少走一些弯路,节省了大量的代码.于是我这里对于pandas下dataframe的pivot()方法进行学习总结和应用,以便回顾和巩固知识. 以统计学生成绩信息为例. 在做学生成绩信息统计的时候
Python Pandas库的学习(三)
今天我们来继续讲解Python中的Pandas库的基本用法 那么我们如何使用pandas对数据进行排序操作呢? food.sort_values("Sodium_(mg)",inplace= True) print(food["Sodium_(mg)"]) food.sort_values("Sodium_(mg)",inplace=True,ascending= False) print(food["Sodium_(mg)"
小白学 Python 数据分析(7):Pandas (六)数据导入
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择 引言
小白学 Python 数据分析(10):Pandas (九)数据运算
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择 小白学
PHP+Mysql+jQuery实现地图区域数据统计-展示数据
我们要在地图上有限的区块内展示更多的信息,更好的办法是通过地图交互来实现.本文将给大家讲解通过鼠标滑动到地图指定省份区域,在弹出的提示框中显示对应省份的数据信息.适用于数据统计和地图区块展示等场景. 查看演示 下载源码 本文紧接本站上一篇文章:PHP+Mysql+jQuery实现地图区域数据统计-载入数据,在原文实例基础上新加提示框展示数据功能,如果您对地图绘制和数据载入不太了解,建议先阅读本站上篇文章的介绍. HTML 首先在head部分载入raphael.js库文件和chinamapPath
热门专题
Android xml 半圆线条
hyper-v 固定ip
css 公共样式 提取
coderunner如何输入
IDEA中println报错怎么改正
keepalived 脑裂 抓不到,无 vrrp包
颜色值可以缩小时必须使用缩写形式
webstorm引入了vue的包了之后没有vue类
excel宏取值拼接
webdriver click被挡住
antdesign页面刷新侧边栏默认跑回第一项去了
git bash here没有node命令
TDengine 创建用户后无法登录
Java生成8位不随机id
神舟control center风扇换不了
opencv wheel包下载
python使用字符串中的对象的类型执行对象
sql profiler监控死锁
inner join 笛卡尔
dubbo使用netty线程模型