Pandas的标签处理需要分成多种情况来处理,Series和DataFrame根据标签索引数据的操作方法是不同的,单列索引和双列索引的操作方法也是不同的. 单列索引 In [2]: import pandas as pd In [3]: import numpy as np In [4]: df = pd.DataFrame(np.ones((2, 4)), index=list("AB"), columns=list("abcd")) In [5]: df.ilo
Pandas--ix vs loc vs iloc区别 0. DataFrame DataFrame 的构造主要依赖如下三个参数: data:表格数据: index:行索引: columns:列名: index 对行进行索引,columns 对列进行索引: import pandas as pd data = [[1,2,3],[4,5,6]] index = [0,1] columns=['a','b','c'] df = pd.DataFrame(data=data, index=index
Different Choices for Indexing 1. loc--通过行标签索引行数据 1.1 loc[1]表示索引的是第1行(index 是整数) import pandas as pd data = [[1,2,3],[4,5,6]] index = [0,1] columns=['a','b','c'] df = pd.DataFrame(data=data, index=index, columns=columns) print df.loc[1] ''' a 4 b 5 c
import numpy as np import pandas as pd There are a number of basic operations for rearanging tabular data. These are alternatingly referred to as reshape or pivot operations. 多层索引重塑 Hierarchical indexing provides a consistent way to rearrange data in