一.Pandas的数据操作 0.DataFrame的数据结构 1.Series索引操作 (0)Series class Series(base.IndexOpsMixin, generic.NDFrame): """ One-dimensional ndarray with axis labels (including time series). #带轴标签的一维ndarray(包括时间序列). Labels need not be unique but must be a
技术背景 在前面一篇博客中我们介绍过关于python的表格数据处理方案,这其中的工作重点就是对表格类型的数据进行梳理.计算和展示,本文重点介绍展示这个方面的工作.首先我们看一个案例,定义一个数组形式的表格数据: [dechin@dechin-manjaro table]$ ipython Python 3.8.5 (default, Sep 4 2020, 07:30:14) Type 'copyright', 'credits' or 'license' for more informatio
2.利用Pandas处理数据2.1 汇总计算当我们知道如何加载数据后,接下来就是如何处理数据,虽然之前的赋值计算也是一种计算,但是如果Pandas的作用就停留在此,那我们也许只是看到了它的冰山一角,它首先比较吸引人的作用是汇总计算 (1)基本的数学统计计算这里的基本计算指的是sum.mean等操作,主要是基于Series(也可能是来自DataFrame)进行统计计算.举例如下: #统计计算 sum mean等 import numpy as np import pandas as pd df=p