pandas 遍历有以下三种访法. iterrows():在单独的变量中返回索引和行项目,但显着较慢 itertuples():快于.iterrows(),但将索引与行项目一起返回,ir [0]是索引 zip:最快,但不能访问该行的索引 df= pd.DataFrame({'a': range(0, 10000), 'b': range(10000, 20000)}) 0.for i in df:并不是遍历行的方式 for i in df: print(i) 正式因为for in df不是直接遍
如果Pandas只是能把一些数据变成 dataframe 这样优美的格式,那么Pandas绝不会成为叱咤风云的数据分析中心组件.因为在数据分析过程中,描述数据是通过一些列的统计指标实现的,分析结果也需要由具体的分组行为,对各组横向纵向对比. GroupBy 就是这样的一个有力武器.事实上,SQL语言在Pandas出现的几十年前就成为了高级数据分析人员的标准工具,很大一部分原因正是因为它有标准的SELECT xx FROM xx WHERE condition GROUP BY xx HAVING
import numpy as np import pandas as pd import matplotlib.pyplot as plt df1 = pd.DataFrame(np.arange(1000, 1100, 4).reshape(5,5), index=['a'+str(i) for i in range(5)], columns=['b'+str(j) for j in range(5)]) df1 .dataframe tbody tr th:only-of-type { v