在pandas中怎么样实现类似mysql查找语句的功能: select * from table where column_name = some_value; pandas中获取数据的有以下几种方法: 布尔索引 位置索引 标签索引 使用API 假设数据如下: import pandas as pd import numpy as np df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(), 'B': 'one one
目的 1.查找NaN值(定位到哪一列.在列的哪个索引位置) 2.填充NaN值(向上填充.向下填充.线性填充等) 3.过滤NaN值 构建简单的Dataframe数据结构环境 import pandas as pd import numpy as np #在df中nan和None都会被自动填充为NaN df=pd.DataFrame({'a':[np.nan,1,2,3],'b':[None,5,6,7],'c':[8,9,10,11]}) print(df) '''结果 a b c 0 NaN N