首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
pca算法python实现
2024-11-10
PCA算法和python实现
第十三章 利用PCA来简化数据 一.降维技术 当数据的特征很多的时候,我们把一个特征看做是一维的话,我们数据就有很高的维度.高维数据会带来计算困难等一系列的问题,因此我们需要进行降维.降维的好处有很多,比如:降低算法开销,让数据更加便于使用,去燥,数据更易于显示等等. 目前的降维技术主要有三种:第一种主成分分析(PCA),也就是本章介绍的内容,它只保留方差方向最大的若干个特征:第二种是因子分析,这种方法它的思想就是认为数据是由隐参数和噪声混合而成,如果我们能够找到隐参数和噪声就能够实现降维:第三
PCA算法Python实现
源代码: #-*- coding: UTF-8 -*- from numpy import * import numpy def pca(X,CRate): #矩阵X每行是一个样本 #对样本矩阵进行中心化样本矩阵 meanValue=mean(X,axis=0)#计算每列均值 X=X-meanValue#每个维度元素减去对应维度均值 #协方差矩阵 C=cov(X,rowvar=0) #特征值,特征向量 eigvalue,eigvector=linalg.eig(mat(C))#特征值,特征向量
三种方法实现PCA算法(Python)
主成分分析,即Principal Component Analysis(PCA),是多元统计中的重要内容,也广泛应用于机器学习和其它领域.它的主要作用是对高维数据进行降维.PCA把原先的n个特征用数目更少的k个特征取代,新特征是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的k个特征互不相关.关于PCA的更多介绍,请参考:https://en.wikipedia.org/wiki/Principal_component_analysis. PCA的主要算法如下: 组织数据形式,以便于模型
Python使用三种方法实现PCA算法[转]
主成分分析(PCA) vs 多元判别式分析(MDA) PCA和MDA都是线性变换的方法,二者关系密切.在PCA中,我们寻找数据集中最大化方差的成分,在MDA中,我们对类间最大散布的方向更感兴趣. 一句话,通过PCA,我们将整个数据集(不带类别标签)映射到一个子空间中,在MDA中,我们致力于找到一个能够最好区分各类的最佳子集.粗略来讲,PCA是通过寻找方差最大的轴(在一类中,因为PCA把整个数据集当做一类),在MDA中,我们还需要最大化类间散布. 在通常的模式识别问题中,MDA往往在PCA后面.
python实现PCA算法原理
PCA主成分分析法的数据主成分分析过程及python原理实现 1.对于主成分分析法,在求得第一主成分之后,如果需要求取下一个主成分,则需要将原来数据把第一主成分去掉以后再求取新的数据X’的第一主成分,即为原来数据X的第二主成分,循环往复即可. 2.利用PCA算法的原理进行数据的降维,其计算过程的数学原理如下所示,其降维的过程会丢失一定的信息,因此采用恢复过程恢复原来的高维数据后,它会恢复为原来数据在新的主成分上的映射点,而不再是原来的坐标点. (1)高维数据的降维(从n维降到k维数据) (2)从
PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?
PCA, Principle Component Analysis, 主成份分析, 是使用最广泛的降维算法. ...... (关于PCA的算法步骤和应用场景随便一搜就能找到了, 所以这里就不说了. ) 假如你要处理一个数据集, 数据集中的每条记录都是一个\(d\)维列向量. 但是这个\(d\)太大了, 所以你希望把数据维度给降下来, 既可以去除一些冗余信息, 又可以降低处理数据时消耗的计算资源(用computation budget 来描述可能更形象). 用稍微正式点的语言描述: 已知:一个数据
pageRank算法 python实现
一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO(^_^).PageRank算法计算每一个网页的PageRank值,然后根据这个值的大小对网页的重要性进行排序.它的思想是模拟一个悠闲的上网者,上网者首先随机选择一个网页打开,然后在这个网页上呆了几分钟后,跳转到该网页所指向的链接,这样无所事事.漫无目的地在网页上跳来跳去,PageRank就是估计这个
常见排序算法-Python实现
常见排序算法-Python实现 python 排序 算法 1.二分法 python 32行 right = length- : ] ): test_list = [,,,,,,] test_val1 = test_val2 = ): length = len(array) : : ): ]: array[i],array[i+] = array[i+],array[i] length -= : : ): ]: array[i],arra
模式识别(1)——PCA算法
作者:桂. 时间:2017-02-26 19:54:26 链接:http://www.cnblogs.com/xingshansi/articles/6445625.html 声明:转载请注明出处,谢谢. 前言 本文为模式识别系列第一篇,主要介绍主成分分析算法(Principal Component Analysis,PCA)的理论,并附上相关代码.全文主要分六个部分展开: 1)简单示例.通过简单的例子,引出PCA算法: 2)理论推导.主要介绍PCA算法的理论推导以及对应的数学含义: 3)算法
降维之pca算法
pca算法: 算法原理: pca利用的两个维度之间的关系和协方差成正比,协方差为0时,表示这两个维度无关,如果协方差越大这表明两个维度之间相关性越大,因而降维的时候, 都是找协方差最大的. 将XX中的数据进行零均值化,即每一列都减去其均值. 计算协方差矩阵C=1mXTXC=1mXTX 求出CC的特征值和特征向量 将特征向量按对应特征值大小从上到下按行排列成矩阵,取前k行组成矩阵P Y=XPY=XP就是降维到k维后的数据. 代码: # coding=utf- import matplotlib.p
kmp算法python实现
kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单的办法就是蛮力的一个字符一个字符的匹配,但那样的时间复杂度会是O(m*n)kmp算法保证了时间复杂度为O(m+n) 基本原理 举个例子:发现x与c不同后,进行移动a与x不同,再次移动此时比较到了c与y, 于是下一步移动成了下面这样这一次的移动与前两次的移动不同,之前每次比较到上面长字符串的字符位置后
PCA算法学习(Matlab实现)
PCA(主成分分析)算法,主要用于数据降维,保留了数据集中对方差贡献最大的若干个特征来达到简化数据集的目的. 实现数据降维的步骤: 1.将原始数据中的每一个样本用向量表示,把所有样本组合起来构成一个矩阵,通常需对样本矩阵进行处理,得到中性化样本矩阵 2.求样本矩阵的协方差矩阵 3.求协方差矩阵的特征值和特征向量 4.将求出的特征向量按照特征值的大小进行组合形成一个映射矩阵.并根据指定的PCA保留的特征个数取出映射矩阵的前n行或者前n列作为最终的映射矩阵. 5.用映射矩阵对数据进行映射,达到数据降
OpenCV学习(35) OpenCV中的PCA算法
PCA算法的基本原理可以参考:http://www.cnblogs.com/mikewolf2002/p/3429711.html 对一副宽p.高q的二维灰度图,要完整表示该图像,需要m = p*q维的向量空间,比如100*100的灰度图像,它的向量空间为100*100=10000.下图是一个3*3的灰度图和表示它的向量表示: 该向量为行向量,共9维,用变量表示就是[v0, v1, v2, v3, v4, v5, v6, v7, v8],其中v0...v8,的范围都是0-255.
我所认识的PCA算法的princomp函数与经历 (基于matlab)
我接触princomp函数,主要是因为实验室的项目需要,所以我一接触的时候就希望快点学会怎么用. 项目中需要利用PCA算法对大量数据进行降维. 简介:主成分分析 ( Principal Component Analysis , PCA )或者主元分析.是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题.计算主成分的目的是将高维数据投影到较低维空间. 对于银行后台存储的大量数据进行分析,并不一件易事,由于每个人的信息属性众多,辨别起来颇为费力
PCA算法的最小平方误差解释
PCA算法另外一种理解角度是:最小化点到投影后点的距离平方和. 假设我们有m个样本点,且都位于n维空间 中,而我们要把原n维空间中的样本点投影到k维子空间W中去(k<n),并使得这m个点到投影点的距离(即投影误差)的平方和最小.我们假设投影到的k维子空间的标准正交基(orthonormal basis)为 ,这组标准正交基组成了一个的矩阵U: 则称为子空间W 的投影矩阵(projection matrix). 如果我们不从标准正交基出发,如何求得W的投影矩阵?设是W 的任意一组基,形成一个的矩阵
PCA算法理解及代码实现
github:PCA代码实现.PCA应用 本文算法均使用python3实现 1. 数据降维 在实际生产生活中,我们所获得的数据集在特征上往往具有很高的维度,对高维度的数据进行处理时消耗的时间很大,并且过多的特征变量也会妨碍查找规律的建立.如何在最大程度上保留数据集的信息量的前提下进行数据维度的降低,是我们需要解决的问题. 对数据进行降维有以下优点: (1)使得数据集更易使用 (2)降低很多算法的计算开销 (3)去除噪声 (4)使得结果易懂 降维技术作为数据预处理的一部
KMP算法-Python版
KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以这样初始化: 之后我们只需要比较i指针指向的字符和j指针指向的字符是否一致.如果一致就都向后移动,如果不一致,如下图: A和E不相等,那就把i指针移回第1位(假设下标从0开始),j移动到模式串的第0位,然后又重新开始这个步骤: 因为主串匹配失败的位置前面除了第一个A之外再也没有A了,我们为什么能知道
PCA主成分分析Python实现
作者:拾毅者 出处:http://blog.csdn.net/Dream_angel_Z/article/details/50760130 Github源代码:https://github.com/csuldw/MachineLearning/tree/master/PCA PCA(principle component analysis) .主成分分析,主要是用来减少数据集的维度,然后挑选出基本的特征.原理简单,实现也简单.关于原理公式的推导,本文不会涉及,你能够參考以下的參考文献,也能够去W
压缩感知重构算法之IRLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构算法之OLS算法python实现 压缩感知重构算法之IRLS算法python实现 IRLS(iteratively reweighted least squares)算法 (本文给出的代码未进行优化,只是为了说明算法流程 ,所以运行速度不是很快) IRLS(iteratively reweighte
压缩感知重构算法之OLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构算法之OLS算法python实现 压缩感知重构算法之IRLS算法python实现 Orthogonal Least Squares (OLS)算法流程 实验 要利用python实现,电脑必须安装以下程序 python (本文用的python版本为3.5.1) numpy python包(本文用的版本
压缩感知重构算法之CoSaMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构算法之OLS算法python实现 压缩感知重构算法之IRLS算法python实现 算法流程 算法分析 python代码 要利用python实现,电脑必须安装以下程序 python (本文用的python版本为3.5.1) numpy python包(本文用的版本为1.10.4) scipy pyth
热门专题
tomcat启动但是没有启动应用
python所有库的安装
solr 7.5部署
点云分类 lidar arcgis pro
game maker studio 远程服务器出错
java spring 代理类反射
centos mysql 2003报错 10061
sap debit memo指引
完成证书申请后消失了
群晖万兆网卡兼容列表
python的make dinner
react 树checkbox 手写
安装ssr需要多大带宽
android 控件重叠显示
linux 批量部署
python 中models是什么包
telnet http网页
flex-basis 禁用
hivemap数量太少导致处理慢
ClaimsPrincipal Claim 修改内容