前言 主成份分析,简写为PCA(Principle Component Analysis).用于提取矩阵中的最主要成分,剔除冗余数据,同时降低数据纬度.现实世界中的数据可能是多种因数叠加的结果,如果这些因数是线性叠加,PCA就可以通过线性转化,还原这种叠加,找到最原始的数据源. PCA原理 P.S: 下面的内容需要一定线性代数基础,如果只想了解如何在R中使用,可以跳过此节 本质上来讲,PCA主要是找到一个线性转换矩阵P,作用在矩阵X(X的列向量是一条记录,行向量是一个feature)上,使其转换