Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. (1) class Solution { public: int trailingZeroes(int n) { ; ; n / i; i *= ) { ans += n / i; } return ans; } }; (2) class Solu
Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. Credits:Special thanks to @ts for adding this problem and creating all test cases. 这道题并没有什么难度,是让求一个数的阶乘末尾0的个数,也就是要找乘数中10的个数,
Given an integer n, return the number of trailing zeroes in n!. Example 1: Input: 3 Output: 0 Explanation: 3! = 6, no trailing zero. Example 2: Input: 5 Output: 1 Explanation: 5! = 120, one trailing zero. Note: Your solution should be in logarithmic
题目链接:https://vjudge.net/problem/LightOJ-1138 1138 - Trailing Zeroes (III) PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB You task is to find minimal natural number N, so that N! contains exactly Q zeroes on the trail in
题目 Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. 分析 Note中提示让用对数的时间复杂度求解,那么如果粗暴的算出N的阶乘然后看末尾0的个数是不可能的. 所以仔细分析,N! = 1 * 2 * 3 * ... * N 而末尾0的个数只与这些乘数中5和2的个数有关,因为每出现一对5和2就会产生
Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. Credits:Special thanks to @ts for adding this problem and creating all test cases. Hide Tags Math 这题应该是2014年年底修改该过测试样本,之前的
Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. 题目标签:Math 题目要求我们找到末尾0的数量. 只有当有10的存在,才会有0,比如 2 * 5 = 10; 4 * 5 = 20; 5 * 6 = 30; 5 * 8 = 40 等等,可以发现0 和 5 的联系. 所以这一题也是在问 n 里有多