Perfect Cubes Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14901 Accepted: 7804 Description For hundreds of years Fermat's Last Theorem, which stated simply that for n > 2 there exist no integers a, b, c > 1 such that a^n = b^n + c
Perfect Cubes Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 12595 Accepted: 6707 Description For hundreds of years Fermat's Last Theorem, which stated simply that for n > 2 there exist no integers a, b, c > 1 such that a^n = b^n + c
Perfect Cubes Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 15302 Accepted: 7936 Description For hundreds of years Fermat's Last Theorem, which stated simply that for n > 2 there exist no integers a, b, c > 1 such that a^n = b^n + c
在算法竞赛中,很多问题是来不及用数学公式推导出来的.或者说根本就找不到数学规律,这时我们就需要使用枚举来暴力破解. 不过枚举也是需要脑子的,一味的暴力只能超时.因此我这里选择了几道mooc上经典的题目来做复习. 1.完美立方. 思路: 从2到N枚举a的值,2到a枚举d的值,2到d的枚举b的值,2到c枚举b的值.当 满足a*a*a==b*b*b+c*c*c+d*d*d 的时候对结果输出. 代码如下: #include <iostream> using namespace std; int mai
Perfect Cubes Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16522 Accepted: 8444 Description For hundreds of years Fermat's Last Theorem, which stated simply that for n > 2 there exist no integers a, b, c > 1 such that a^n = b^n + c
枚举: 1.完美立方 #include<iostream> #include <cstdio> using namespace std; int main() { int N; scanf("%d",&N); for (int a = 2; a <= N; ++a) for(int b = 2;b< a;++b) for(int c = b;c < a;++c) for(int d = c;d < a;++d) if(a * a
最短路练习 0. Til the Cows Come Home POJ - 2387 完美的模板题 //#include<Windows.h> #include<iostream> #include<algorithm> #include<cstring> #include<cstdio> #include<queue> using namespace std; ; ; const int inf = 0x3f3f3f3f; str