I. Older Brother Your older brother is an amateur mathematician with lots of experience. However, his memory is very bad. He recently got interested in linear algebra over finite fields, but he does not remember exactly which finite fields exist. For
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29046 Accepted: 7342 Case Time Limit: 4000MS Description Given a big integer number, you are required to find out whether it's a prime number. Input The first line contains the
进入a b 多少努力p, q 使p*q == a && p < q && p >= b 直接大整数分解 然后dfs所有可能的解决方案劫持 #include <cstdio> #include <cstring> #include <cstdlib> #include <algorithm> #include <cmath> using namespace std; typedef long long L
题意:是素数就输出Prime,不是就输出最小因子. #include <cstdio> #include<time.h> #include <algorithm> #include<set> using namespace std; typedef long long llt; ; set<llt>sss; //利用二进制计算a*b%mod llt multiMod(llt a, llt b, llt mod){ llt ret = 0LL; a
Miller-rabin算法是一个用来快速判断一个正整数是否为素数的算法.它利用了费马小定理,即:如果p是质数,且a,p互质,那么a^(p-1) mod p恒等于1.也就是对于所有小于p的正整数a来说都应该复合a^(p-1) mod p恒等于1.那么根据逆否命题,对于一个p,我们只要举出一个a(a<p)不符合这个恒等式,则可判定p不是素数.Miller-rabin算法就是多次用不同的a来尝试p是否为素数. 但是每次尝试过程中还做了一个优化操作,以提高用少量的a检测出p不是素数的概率.这个优化叫做
GCDLCM 题目链接 题目描述 In FZU ACM team, BroterJ and Silchen are good friends, and they often play some interesting games. One day they play a game about GCD and LCM. firstly BrotherJ writes an integer A and Silchen writes an integer B on the paper. Then Br
Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and the least common multiple (LCM) of a and b. But what about the inverse? That is: given GCD and LCM, finding a and b. Input The input contains multiple