首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
prufer序列 树高期望
2024-10-20
树的计数 Prufer序列+Cayley公式
先安利一发.让我秒懂.. 第一次讲这个是在寒假...然而当时秦神太巨了导致我这个蒟蒻自闭+颓废...早就忘了这个东西了... 结果今天老师留的题中有两道这种的:Luogu P4981 P4430 然后决定了解一下... 一.Prufer序列 Prufer序列,可以用来解一些关于无根树计数的问题. Prufer序列是一种无根树的编码表示,对于一棵n个节点带编号的无根树,对应唯一一串长度为n-1的Prufer编码,这性质很好. 1.无根树转化为Prufer序列 首先定义无根树中度数为1的节点是叶子节
$Prufer$序列
\(Prufer\)序列 \(Prufer\)序列与树的相互转换: 树->\(Prufer\)序列 找到一个编号最小的叶子结点,把这个点删掉并且把跟他连着的那个点的编号加入\(Prufer\)序列. \(Prufer\)序列->树 设集合\(S={1,\cdots,n}\) 找到一个不在\(Prufer\)序列中且在\(S\)中的数,将它与\(Prufer\)序列中的第一个元素连边,并将这个数和\(Prufer\)序列的第一个元素删掉. 最后\(S\)会剩下最后两个元素,把这两个元素连边. 性
Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数
最近碰了$prufer$ 序列和组合数..于是老师留了一道题:P2624 [HNOI2008]明明的烦恼 qwq要用高精... 于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可还行OvO) 首先前置知识:$Prufer序列$ 然后,因为对于一个$ Prufer $序列有$n-2$ 项,而每个点的度数-1是这个点在$ Prufer$ 序列中出现的次数 所以...这不是多重集的排列吗(不懂多重集?) 所以我们成功了一半(雾) 在计算时会爆$ long \space long
bzoj1211: prufer序列 | [HNOI2004]树的计数
题目大意: 告诉你树上每个节点的度数,让你构建出这样一棵树,问能够构建出树的种树 这里注意数量为0的情况,就是 当 n=1时,节点度数>0 n>1时,所有节点度数相加-n!=n-2 可以通过通过除了根,必然有n-1个节点作为上一个节点的儿子来理解 然后通过学习prufer序列可知 每一颗树都能够建成唯一的序列,这里的n-2个数就是任意插入到prufer序列中,这很明显就是一个排列,那么之后就是计算 ans = (n-2)!/(w[1]!*w[2]!..w[n]!) w[i]表示i节点上的度数减
树的计数 + prufer序列与Cayley公式 学习笔记
首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.net/morejarphone/article/details/50677172 因为是偶然翻了他的这篇博文,然后就秒会了. prufer数列,可以用来解一些关于无根树计数的问题. prufer数列是一种无根树的编码表示,对于一棵n个节点带编号的无根树,对应唯一一串长度为n-1的prufer编码. (
BZOJ 1211 HNOI2004 树的计数 Prufer序列
题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后再乘起来 注意此题无解须要输出0 当n!=1&&d[i]==0时 输出0 当Σ(d[i]-1)!=n-2时输出0 写代码各种脑残--竟然直接算了n-2没用阶乘-- #include<cstdio> #include<cstring> #include<iostre
【BZOJ 1211】 1211: [HNOI2004]树的计数 (prufer序列、计数)
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2468 Solved: 868 Description 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数. Input 第一行是一个正整数n,表示树有n个结点.第二行有n个数,第i个数表示di,即
Prufer序列与树的计数(坑)
\(prufer\)序列: 无根树转\(prufer\)序列: 不断找编号最小的叶子节点,删掉并在序列中加入他相连的节点. \(prufer\)转无根树: 找到在目前\(prufer\)序列中未出现且未使用的编号最小的的节点与当前位相连,当前位从\(prufer\)序列中删除,节点标为已使用,剩余最后两个未使用的节点相连. 性质: \(1.prufer\)序列中某个编号出现的次数就等于这个编号的节点在无根树中的度数-1. \(2.\)一棵n个节点的无根树唯一地对应了一个长度为\(n-2\)的数列
【BZOJ1005/1211】[HNOI2008]明明的烦恼/[HNOI2004]树的计数 Prufer序列+高精度
[BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1 Output 一个整数,表示不同的满足要求的树的个数,无解输出0 Sample Input 3 1 -1 -1 Sample Outp
[HNOI2004]树的计数 BZOJ 1211 prufer序列
题目描述 输入输出格式 输入格式: 输入文件第一行是一个正整数n,表示树有n个结点.第二行有n个数,第i个数表示di,即树的第i个结点的度数.其中1<=n<=150,输入数据保证满足条件的树不超过10^17个. 输出格式: 输出满足条件的树有多少棵. 输入输出样例 输入样例#1: 复制 4 2 1 2 1 输出样例#1: 复制 2首先不知道prufer序列的可以学一下:https://blog.csdn.net/update7/article/details/77587329知道以后,其实就是
【洛谷2290】[HNOI2004] 树的计数(Python+利用prufer序列结论求解)
点此看题面 大致题意: 给定每个点的度数,让你求有多少种符合条件的无根树. \(prufer\)序列 这显然是一道利用\(prufer\)序列求解的裸题. 考虑到由\(prufer\)序列得到的结论:对于给定度数为\(d_{1\sim n}\)的一棵无根树共有\(\frac{(n-2)!}{\prod_{i=1}^n(d_i-1)!}\)种情况. 套公式即可. 高精/质因数分解/\(Python\) 等等,答案小于\(10^{17}\)? 这看似在\(long\ long\)范围内,但是我们前面
bzoj1211: [HNOI2004]树的计数(prufer序列+组合数学)
1211: [HNOI2004]树的计数 题目:传送门 题解: 今天刚学prufer序列,先打几道简单题 首先我们知道prufer序列和一颗无根树是一一对应的,那么对于任意一个节点,假设这个节点的度数为k,那么在prufer序列里面这个节点就会出现k-1次 (反过来也同理成立) 那么具体的原因这里有解释: 对于任意一个节点在prufer序列里出现一次的话,那么就表示我有一个孩子被删了,那么少了的一次去哪里了呢,因为每次加进去的都是父亲节点,那么少的肯定就是我自己连出去的一条边啊... 知道了这个
树的计数 + prufer序列与Cayley公式(转载)
原文出处:https://www.cnblogs.com/dirge/p/5503289.html 树的计数 + prufer序列与Cayley公式 学习笔记(转载) 首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.net/morejarphone/article/details/50677172 因为是偶然翻了他的这篇博文,然后就秒会了. pruf
[HNOI2004][bzoj1211] 树的计数(prufer序列)
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3432 Solved: 1295[Submit][Status][Discuss] Description 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数. Input 第一行是一个正整数n,表
bzoj1211树的计数 x bzoj1005明明的烦恼 题解(Prufer序列)
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3432 Solved: 1295[Submit][Status][Discuss] Description 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数. Input 第一行是一个正整数n,表
【JZOJ5068】【GDSOI2017第二轮模拟】树 动态规划+prufer序列
题面 有n个点,它们从1到n进行标号,第i个点的限制为度数不能超过A[i]. 现在对于每个s (1 <= s <= n),问从这n个点中选出一些点组成大小为s的有标号无根树的方案数. 100%的数据:n <= 100 100 prufer序列 每个大小为n,有标号无根树都可以表示成一个长度为(n-2)且取值在[1,n]的序列. 这个序列就叫prufer序列. 树转prufer序列 1.每次查找一个标号最小且度数为一的点,使与之相连的点的编号加入序列尾: 2.删除树中的这个点. prufe
树的计数(prufer序列 或 purfer序列)
题解 首先我们要知道一条性质,prufer序列中的某个点出现次数为该点在树中度数-1 感性理解一下,其实按照prufer序列求法自己推一下就出来了 设题目里给的度为$d[]$ 先将所有的d-- 然后按照排列组合得出来 这是多重集排列数 首先从n-2中选择d[1]个数是$C_{n}^{d[1]}$然后再从剩余n-d[1]中选d[2] $C_{n-d[1]}^{d[2]}$依次类推 $C_{n-2}^{d[1]}\times C_{n-2-d[1]}^{d[2]}\times C_{n-2-d[1]
2021.07.18 P2290 树的计数(prufer序列、组合数学)
2021.07.18 P2290 树的计数(prufer序列.组合数学) [P2290 HNOI2004]树的计数 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.prufer序列 2.多重集的全排列公式 \[ \frac{(n-2)!}{\prod_{i=1}^n (d_i-1)!} \] 多重集的全排列 - Tekka - 博客园 (cnblogs.com) 3.排列组合优化算法及组合数与杨辉三角的关系 (4条消息) 杨辉三角与组合数_Bell的博客-CSDN博
[BZOJ1211][HNOI2004]树的计数(Prufer序列)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1211 分析: 关于无根树的组合数学问题肯定想到Prufer序列,类似bzoj1005那题 说下prufer序列的性质: 1.一个无根树对应一个prufer序列 2.一个n个节点无根树对应的prufer序列长度为n-2 3.prufer序列中某节点出现的次数==这个节点在对应的无根树中度数-1 所以这题求无根树的数量等价于求prufer序列的数量. 注意无解的情况就行了.
【BZOJ1211】【HNOI2004】树的计数 prufer序列
题目描述 给你\(n\)和\(n\)个点的度数,问你有多少个满足度数要求的生成树. 无解输出\(0\).保证答案不超过\({10}^{17}\). \(n\leq 150\) 题解 考虑prufer序列. 答案为 \[ \frac{(n-2)!}{\prod(d_i-1)!} \] 直接乘会爆long long,要转成\(n-1\)个组合数的乘积.当然你也可以分解质因数. 如果\(n\neq 1\)且\(d_i=1\),输出\(0\) 如果\(\sum d_i\neq 2n-2\),输出\(0\
热门专题
ubuntu 18.04 配置有线网
国内访问国外的加速器
JS POST 请求 调试
neo4j创建索引查询
ssl根证书自认证httpd
aspose.word 拆分单元格
loss图绘制 F1
arcgis10.6多了什么功能
lex.l 和 yacc.y how to build
Jquery 为对象添加属性
jfromdesigner教程
ssr一键安装脚本 2022
docker 是删除容器会删除日志么
python导入上层目录的包
爬虫用session获取验证码图片为空
javaword模版数据填充
用dev为repositoryitemcombox添加事件
tensorrt 强化学习
weblogic控制台的跨域身份证明密码
51社区最新登录地址