首先我画了一张图来表示GIL运行的方式: Python 3执行如下计算代码:#-*-conding:utf-8-*-import threading import timedef add(): n = 1 for i in range(1000000): n += i print('加法结果',n) def multiplication(): m = 1 for i in range(1,100000): m *= i print('乘法结果:',m) now = time.time()t1 =
论文 Belghazi, Mohamed Ishmael, et al. " Mutual information neural estimation ." International Conference on Machine Learning . 2018. 利用神经网络的梯度下降法可以实现快速高维连续随机变量之间互信息的估计,上述论文提出了Mutual Information Neural Estimator (MINE).NN在维度和样本量上都是线性可伸缩的,MI的计算可以通
from math import sqrt def multipl(a,b): sumofab=0.0 for i in range(len(a)): temp=a[i]*b[i] sumofab+=temp return sumofab def corrcoef(x,y): n=len(x) #求和 sum1=sum(x) sum2=sum(y) #求乘积之和 sumofxy=multipl(x,y) #求平方和 sumofx2 = sum([pow(i,2) for i in x]) sum
#Author:qinjiaxi '''本程序计算各种循环的时间效率''' from timeit import Timer def test1(n): li = [] for i in range(n*1000): li = li +[i] return li def test2(n): li = [] li = [i for i in range(n*1000)] return li def test3(n): li = [] for i in range(n*1000): li.appen
getsizeof的局限 python非内置数据类型的对象无法用sys.getsizeof()获得真实的大小,例: import networkx as nx import sys G = nx.Graph() l = [i for i in xrange(10000)] print "size of l:", sys.getsizeof(l) G.add_nodes_from(l) print "size of graph:", sys.getsizeof(G)