用Python求均值与方差,可以自己写,也可以借助于numpy,不过到底哪个快一点呢? 我做了个实验,首先生成9百万个样本: nlist=range(0,9000000) nlist=[float(i)/1000000 for i in nlist] N=len(nlist) 第二行是为了让样本小一点,否则从1加到9百万会溢出的. 自己实现,遍历数组来求均值方差: sum1=0.0 sum2=0.0 for i in range(N): sum1+=nlist[i] sum2+=nlist[i]
from __future__ import print_function # 均值计算 data = [3.53, 3.47, 3.51, 3.72, 3.43] average = float(sum(data))/len(data) print(average) #方差计算 total = 0 for value in data: total += (value - average) ** 2 stddev = math.sqrt(total/len(data)) print(stddev
Python股票数据分析 最近在学习基于python的股票数据分析,其中主要用到了tushare和seaborn.tushare是一款财经类数据接口包,国内的股票数据还是比较全的 官网地址:http://tushare.waditu.com/index.html#id5.seaborn则是一款绘图库,通过seaborn可以轻松地画出简洁漂亮的图表,而且库本身具有一定的统计功能. 导入的模块: import matplotlib.pyplot as plt import seaborn as sn