并发是快速处理大量相似任务的绝佳办法,但对于有返回值的方法,需要一个容器专门来存储每个进程处理完的结果 from multiprocessing import Pool import time #返回值只有进程池才有,父子进程没有返回值 def func(i): time.sleep(1) return i*i if __name__ == '__main__': p = Pool(5) #从异步提交任务获取结果 res_l = [] for i in range(20): res = p.ap
1.函数只有一个返回值 示例1: package main //必须有一个main包 import "fmt" func myfunc01() int { return 666 } func main() { var a int a = myfunc01() fmt.Println("a = ", a) b := myfunc01() fmt.Println("b = ", b) } 执行结果: a = 666 b = 666 示例2: pack
我们在写python爬虫的过程中,对于大量数据的抓取总是希望能获得更高的速度和效率,但由于网络请求的延迟.IO的限制,单线程的运行总是不能让人满意.因此有了多线程.异步协程等技术. 下面介绍一下python中的多线程及线程池技术,并通过一个具体的爬虫案例实现具体运用. 多线程 先来分析单线程.写两个测试函数 def func1(): for i in range(500000): print("func1", i) def func2(): for i in range(500000)