公式法:两个数相乘等于最小公倍数乘以最大公约数 #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> int gcd2(int a, int b) { int mod = a%b; ) { a = b; b = mod; mod = a%b; } return b; } int main() { int a, b; int cd; scanf("%d", &a); s
在一般将Python的reduce函数的例子中,通常都是拿列表求和来作为例子.那么,是否还有其他例子呢? 本次分享将讲述如何利用Python中的reduce函数对序列求最值以及排序. 我们用reduce函数对序列求最值的想法建立在冒泡排序的算法上.先上例子? from functools import reduce from random import randint A = [randint(1, 100) for _ in range(10)] print('The origin l
最小公倍数:数论中的一种概念,两个整数公有的倍数成为他们的公倍数,当中一个最小的公倍数是他们的最小公倍数,相同地,若干个整数公有的倍数中最小的正整数称为它们的最小公倍数,维基百科:定义点击打开链接 求最小公倍数算法: 最小公倍数=两整数的乘积÷最大公约数 求最大公约数算法: (1)辗转相除法 有两整数a和b: ① a%b得余数c ② 若c=0,则b即为两数的最大公约数 ③ 若c≠0,则a=b,b=c,再回去运行① 比如求27和15的最大公约数过程为: 27÷15 余1215÷12余312÷3余0
最小公倍数:数论中的一种概念,两个整数公有的倍数成为他们的公倍数,其中一个最小的公倍数是他们的最小公倍数,同样地,若干个整数公有的倍数中最小的正整数称为它们的最小公倍数,维基百科:定义点击打开链接 求最小公倍数算法: 最小公倍数=两整数的乘积÷最大公约数 求最大公约数算法: (1)辗转相除法 有两整数a和b: ① a%b得余数c ② 若c=0,则b即为两数的最大公约数 ③ 若c≠0,则a=b,b=c,再回去执行① 例如求27和15的最大公约数过程为: 27÷15 余1215÷12余312÷3余0
方法一:辗转相除法(欧几里得 Euclidean) 用“较大数”除以“较小数”,再用较小数除以第一余数,再用第一余数除以第二余数: 反复直到余数为零为止. #include<iostream> #include<algorithm> using namespace std; /*其计算原理依赖于下面的定理: 定理:gcd(a,b) = gcd(b,a mod b) 证明:a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,
程序分析: 在数学中,两个数的最小公倍数=两个数的乘积/两数的最大公约数. 求两个数的最大公约数,运用辗转相除法:已知两个整数M和N,假定M>N,则求M%N. 如果余数为0,则N即为所求:如果余数不为0,用N除,再求其余数...直到余数为0,则除数就是M和N的最大公约数 代码: #include<stdio.h> int gcd(int a, int b)/*求最大公约数*/ { int r, t; if(a<b) { t = a; a = b; b = t; } r = a %
//求两个函数中的较大者的MAX函数 #include <stdio.h> int main(int argc, const char * argv[]) { printf("input two nimbers\n"); int max(int x,int y); int a, b,c; scanf("%d,%d,",&a,&b); c=max(a,b); printf("max=%d\n",c); printf(&q