SnowNLP是国人开发的python类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob不同的是,这里没有用NLTK,所有的算法都是自己实现的,并且自带了一些训练好的字典.注意本程序都是处理的unicode编码,所以使用时请自行decode成unicode.MIT许可下发行.其 github 主页我自己修改了上文链接中的python代码并加入些许注释,以方便你的理解: f
本文内容主要参考GitHub:https://github.com/isnowfy/snownlp what's the SnowNLP SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob不同的是,这里没有用NLTK,所有的算法都是自己实现的,并且自带了一些训练好的字典.注意本程序都是处理的unicode编码,所以使用时请自行decod
本篇主要是通过对豆瓣图书<平凡的世界>短评进行抓取并进行分析,并用snowNLP对其进行情感分析. 用到的模块有snowNLP,是一个python库,用来进行情感分析. 1.抓取数据 我们把抓取到的数据存储到sqlite,先建表,结构如下: CREATE TABLE comment( id integer PRIMARY KEY autoincrement NOT NULL, commentator VARCHAR(50) NOT NULL, star INTEGER NOT NULL, ti
情感分析就是分析一句话说得是很主观还是客观描述,分析这句话表达的是积极的情绪还是消极的情绪.原理比如这么一句话:“这手机的画面极好,操作也比较流畅.不过拍照真的太烂了!系统也不好.” ① 情感词 要分析一句话是积极的还是消极的,最简单最基础的方法就是找出句子里面的情感词,积极的情感词比如:赞,好,顺手,华丽等,消极情感词比如:差,烂,坏,坑爹等.出现一个积极词就+1,出现一个消极词就-1.里面就有“好”,“流畅”两个积极情感词,“烂”一个消极情感词.那它的情感分值就是1+1-1+1=2. 很明显
转载自:https://www.ibm.com/developerworks/cn/cognitive/library/cc-1606-spark-seniment-analysis/index.html IBM 公司在 2015 年对外宣告了一个新的科技和商务时代的来临—认知时代.这个巨大的转变,来自 IBM 对技术和商业领域的三个重要的洞察力[1].第一,这个世界被数据所充斥.第二,这个世界通过代码被改造.第三,认知计算的出现.其中,认知计算可以: 通过感知与互动,理解非结构化数据 通过生成