首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
python数据分析等比
2024-11-03
python 等比数列
def is_geometric(li): : return True # Calculate ratio ratio = li[]/]) # Check the ratio of the remaining , len(li)): ]) != ratio: return False return True print(is_geometric([, , , ])) print(is_geometric([, , 2.5, 1.25])) print(is_geometric([, , , ])
[Python数据分析]新股破板买入,赚钱几率如何?
这是本人一直比较好奇的问题,网上没搜到,最近在看python数据分析,正好自己动手做一下试试.作者对于python是零基础,需要从头学起. 在写本文时,作者也没有完成这个小分析目标,边学边做吧. ================================================================ Python基础: 中国大学Mooc,南京大学,张莉老师 -<用Python玩转数据> 了解基本的语法和常用函数就行了,其他的用的时候再搜. 财经数据源: TuShare
【Python数据分析】Python3多线程并发网络爬虫-以豆瓣图书Top250为例
基于上两篇文章的工作 [Python数据分析]Python3操作Excel-以豆瓣图书Top250为例 [Python数据分析]Python3操作Excel(二) 一些问题的解决与优化 已经正确地实现豆瓣图书Top250的抓取工作,并存入excel中,但是很不幸,由于采用的串行爬取方式,每次爬完250页都需要花费7到8分钟,显然让人受不了,所以必须在效率上有所提升才行. 仔细想想就可以发现,其实爬10页(每页25本),这10页爬的先后关系是无所谓的,因为写入的时候没有依赖关系,各写各的,所以用串
【Python数据分析】Python3操作Excel(二) 一些问题的解决与优化
继上一篇[Python数据分析]Python3操作Excel-以豆瓣图书Top250为例 对豆瓣图书Top250进行爬取以后,鉴于还有一些问题没有解决,所以进行了进一步的交流讨论,这期间得到了一只尼玛的帮助与启发,十分感谢! 上次存在的问题如下: 1.写入不能继续的问题 2.在Python IDLE中明明输出正确的结果,写到excel中就乱码了. 上述两个问题促使我改换excel处理模块,因为据说xlwt只支持到Excel 2003,很有可能会出问题. 虽然“一只尼玛”给了一个Validate函
【搬砖】【Python数据分析】Pycharm中plot绘图不能显示出来
最近在看<Python数据分析>这本书,而自己写代码一直用的是Pycharm,在练习的时候就碰到了plot()绘图不能显示出来的问题.网上翻了一下找到知乎上一篇回答,试了一下好像不行,而且答住提供的“from pylab import *”的方法也不太符合编程规范,最后在Stackoverflow找到了想要的答案,特在此分析一下给大家: 以下是有问题的代码,不能绘图成功: import pandas as pd from numpy import * import matplotlib.pyp
Python 数据分析(二 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识
Python 数据分析(二) 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识 第1节 groupby 技术 第2节 数据聚合 第3节 分组级运算和转换 第4节 透视表和交叉表 第5节 时间序列 第6节 日期的规范.频率以及移动 第7节 时区处理 第8节 时期及算术运算 第9节 重采样及频率转换 第10节 时间序列绘图 groupby 技术 一.实验简介 Python 数据分析(二)需要同学们先行学完 Python 数据分析(一)的课程. 对数据集进行分
Python数据分析(二): Numpy技巧 (1/4)
In [1]: import numpy numpy.__version__ Out[1]: '1.13.1' In [2]: import numpy as np
Python数据分析(二): Numpy技巧 (2/4)
numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性. 昨天晚上发了第一部分:地址是:http://www.cnblogs.com/cgzl/p/7630065.html 我一共准备了numpy技巧4篇文章,这是第二部分,剩余两部分会在10.1假期内完成. 下面就是numpy技巧的第二部分:由于直接再这里添加jupyter notebook源码的话变形比较厉害,所以还是
Python数据分析(二): Numpy技巧 (3/4)
numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性. 昨天晚上发了第一部分:地址是:http://www.cnblogs.com/cgzl/p/7630065.html 我一共准备了numpy技巧4篇文章,这是第三部分,剩余一部分会在10.1假期内完成. 下面就是numpy技巧的第三部分:由于直接再这里添加jupyter notebook源码的话变形比较厉害,所以还是
Python数据分析(二): Numpy技巧 (4/4)
numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性. 第一部分: http://www.cnblogs.com/cgzl/p/7630065.html 第二部分: http://www.cnblogs.com/cgzl/p/7630972.html 第三部分: http://www.cnblogs.com/cgzl/p/7631471.html 这是最后一部分:由于直
【读书笔记与思考】《python数据分析与挖掘实战》-张良均
[读书笔记与思考]<python数据分析与挖掘实战>-张良均 最近看一些机器学习相关书籍,主要是为了拓宽视野.在阅读这本书前最吸引我的地方是实战篇,我通读全书后给我印象最深的还是实战篇.基础篇我也看了,但发现有不少理论还是讲得不够透彻,个人还是比较倾向于 <Machine Learning>--Tom M.Mitchell,Andrew 的 machine learning 课程,或周华志的<机器学习>,Jiawei Han 的 <data mining>.
Python数据分析实战
Python数据分析实战(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1nlHM1IW8MYg3z79TUwIsWg 提取码:ux8t 复制这段内容后打开百度网盘手机App,操作更方便哦 内容简介 · · · · · · Python 简单易学,拥有丰富的库,并且具有极强的包容性.本书展示了如何利用Python 语言的强大功能,以最小的编程代价进行数据的提取.处理和分析,主要内容包括:数据分析和Python 的基本介绍,NumPy 库,pandas 库,如何
Python数据分析基础教程
Python数据分析基础教程(第2版)(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1_FsReTBCaL_PzKhM0o6l0g 提取码:nkhw 复制这段内容后打开百度网盘手机App,操作更方便哦 内容简介 · · · · · · NumPy是一个优秀的科学计算库,提供了很多实用的数学函数.强大的多维数组对象和优异的计算性能,不仅可以取代Matlab和Mathematica的许多功能,而且业已成为Python科学计算生态系统的重要组成部分.但与这些商业产
Python数据分析基础PDF
Python数据分析基础(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1ImzS7Sy8TLlTshxcB8RhdA 提取码:6xeu 复制这段内容后打开百度网盘手机App,操作更方便哦 内容简介 · · · · · · 想深入应用手中的数据?还是想在上千份文件上重复同样的分析过程?没有编程经验的非程序员们如何能在最短的时间内学会用当今炙手可热的Python语言进行数据分析? 来自Facebook的数据专家Clinton Brownley可以帮您解决上述问题
[Python数据挖掘]第2章、Python数据分析简介
<Python数据分析与挖掘实战>的数据和代码,可从“泰迪杯”竞赛网站(http://www.tipdm.org/tj/661.jhtml)下载获得 1.Python数据结构 2.Numpy数组 import numpy as np #一般以np作为numpy的别名 a = np.array([2, 0, 1, 5]) #创建数组 print(a) #输出数组 print(a[:3]) #引用前三个数字(切片) print(a.min()) #输出a的最小值 a.sort() #将a的元素从小
《Python数据分析与挖掘实战》读书笔记
大致扫了一遍,具体的代码基本都没看了,毕竟我还不懂python,并且在手机端的排版,这些代码没法看. 有收获,至少了解到以下几点: 一. Python的语法挺有意思的 有一些类似于JavaScript这种动态语言的特性在里面,比如多值赋值.比如Lambda表达式等,有机会可以找本python的入门书籍来看看,下面是2017年6月的最新语言排行版,可以看到,传统语言一直在衰退比如c.c#.Java.c++.php.perl等,而一些适应互联网发展的新兴语言一直在增长,比如Python.Ja
python数据分析实用小抄
1. python数据分析基础 2. numpy 3. Scikit-Learn 4. Bokeh 5. Scipy 6. Pandas 转载于:http://www.jianshu.com/p/7f4945b5d29c
Python数据分析--Pandas知识点(三)
本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) Python数据分析--Pandas知识点(二) 下面将是在知识点一, 二的基础上继续总结. 前面所介绍的都是以表格的形式中展现数据, 下面将介绍Pandas与Matplotlib配合绘制出折线图, 散点图, 饼图, 柱形图, 直方图等五大基本图形. Matplotlib是python中的一个2D图形库, 它能以各种硬拷贝的格式和跨平台的交互式环境生成高质量的图形,
Python数据分析入门
Python数据分析入门 最近,Analysis with Programming加入了Planet Python.作为该网站的首批特约博客,我这里来分享一下如何通过Python来开始数据分析.具体内容如下: 数据导入 导入本地的或者web端的CSV文件: 数据变换: 数据统计描述: 假设检验 单样本t检验: 可视化: 创建自定义函数. 数据导入 这是很关键的一步,为了后续的分析我们首先需要导入数据.通常来说,数据是CSV格式,就算不是,至少也可以转换成CSV格式.在Python中,我们的操作如
python数据分析之pandas数据选取:df[] df.loc[] df.iloc[] df.ix[] df.at[] df.iat[]
1 引言 Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用.本文主要介绍Pandas的几种数据选取的方法. Pandas中,数据主要保存为Dataframe和Series是数据结构,这两种数据结构数据选取的方式基本一致,本文主要以Dataframe为例进行介绍. 在Dataframe中选取数据大抵包括3中情况: 1)行(列)选取(单维度选取):df[].这种情况一次只能选取行或者列,即一次选取中,只能为行或者列设置筛选条件(只能为一个维度设置筛选条件). 2
(python数据分析)第03章 Python的数据结构、函数和文件
本章讨论Python的内置功能,这些功能本书会用到很多.虽然扩展库,比如pandas和Numpy,使处理大数据集很方便,但它们是和Python的内置数据处理工具一同使用的. 我们会从Python最基础的数据结构开始:元组.列表.字典和集合.然后会讨论创建你自己的.可重复使用的Python函数.最后,会学习Python的文件对象,以及如何与本地硬盘交互. 3.1 数据结构和序列 Python的数据结构简单而强大.通晓它们才能成为熟练的Python程序员. 元组 元组是一个固定长度,不可改变的Pyt
热门专题
嵌入式 linux 中文 locale
spark saveAsTextFile慢
visualvm插件下载
dos命令查看文件夹下所有文件个数
PackageName怎么获取安卓
max30100灯不亮原因
csc 色彩空间变换
sqlserver汉字转拼音函数
mysql big_int多少位
.net 什么是异步
因为它们附加到不同的 ObjectContext 对象
oracle linux grub修复
jquery 控制横向滚动条
angular 引入公共函数
gradle 添加 install task
sql标准版和企业版区别
plsql怎么让oracle关掉listener.log
VIRT 内存 没回收
openvpn 拨入 访问局域网中其他电脑
mysql 字段扩厂