# coding=gbk # 迭代法---1 def fibonacci (n): if n == 0 or n == 1: return n else : a = 0 b = 1 for i in range (n-1) : t = a a = b b = a + t return b number = eval (input ("请输入您要计算的斐波那契数列的项\n")) cc= fibonacci (number) print (cc) # 迭代法---2 def fibonac
Fibonacci Sequence # fibonacci sequence 斐波那契数列 def fibonacci_for(n): # 使用for循环返回n位斐波那契数列列表 li = [] for i in range(n+1): if i == 0 or i == 1: li.append(1) else: li.append(li[i-2] + li[i-1]) return li def fibonacci_sequence(over, x=1, y=1): # 返回一个over值
在python中生成fibonacci数列的函数 def fibonacci(): list = [] while 1: if(len(list) < 2): list.append(1) else: list.append(list[-1]+list[-2]) yield list[-1] #1 # change this line so it yields its list instead of 1 our_generator = fibonacci() my_output = [] for
def fib(max): n, a, b = 0, 0, 1 while n < max: print(b) a, b = b, a + b n = n + 1 return 'done' 注意,赋值语句: a, b = b, a + b 相当于: t = (b, a + b) # t是一个tuple a = t[0] b = t[1]
使用Python实现斐波那契数列(Fibonacci sequence) 斐波那契数列形如 1,1,2,3,5,8,13,等等.也就是说,下一个值是序列中前两个值之和.写一个函数,给定N,返回第N个斐波那契数字.例如,1返回1 6返回8 我选择了两种方法,一种是将list变成一个队列,另一个则是使用环形队列.不多说,直接上代码:后面我会对为什么这样实现做一个解释 第一个是使用队列的方式: def fibonacciSeq(num): fibonacciSeqList = [] for i in
https://www.cnblogs.com/wolfshining/p/7662453.html 斐波那契数列即著名的兔子数列:1.1.2.3.5.8.13.21.34.…… 数列特点:该数列从第三项开始,每个数的值为其前两个数之和,用python实现起来很简单: a=0 b=1 while b < 1000: print(b) a, b = b, a+b 输出结果: 这里 a, b = b, a+b 右边的表达式会在赋值变动之前执行,即先执行右边,比如第一次循环得到b-->1,a+b -
著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到: 1, 1, 2, 3, 5, 8, 13, 21, 34, ... 如果用Python的列表生成式,很难写出来 如果用函数和生成器的话就很容易了 def fib(max): n, a, b = 0, 0, 1 while n < max: print(b) a, b = b, a + b n = n + 1 return 'done'需要注意上面的 a,b = b, a+b 相当于: t = (b
一.三元运算 三元运算又称三目运算,是对简单的条件语句的简写,如: 简单条件处理: if 条件成立: val = 1 else: val = 2 改成三元运算 val = 1 if 条件成立 else 2 二.智能检测文件编码 用第三方模块chardet 首先要安装chardet模块 ,用pip命令进行安装 chardet的用法 import chardet f = open("staff_table.txt","rb") data =f.read() f.clos