题意 给定一棵树,设计数据结构支持以下操作 1 u v d 表示将路径 (u,v) 加d(d>=0) 2 u v 表示询问路径 (u,v) 上点权绝对值的和 分析 绝对值之和不好处理,那么我们开两棵线段树,一个存正数,一个存负数.然后对于两棵线段树,都要维护子树sz(有效节点数),sum(有效节点权值之和),lz(加法懒标记).特别的,因为负数可能会加到正数,那么修改一个区间的时候,询问一下这个区间最大的负数加上d有没有变成正数,如果有就暴力从负数线段树中删去这个节点,加入正数线段树中.又题目中
<编程之美>183页,问题2.14——求子数组的字数组之和的最大值.(整数数组) 我开始以为可以从数组中随意抽调元素组成子数组,于是就有了一种想法,把最大的元素抽出来,判断是大于0还是小于等于0,如果大于0就对除了这个最大值外剩下的数组部分进行递归: using System; using System.Collections.Generic; using System.Linq; namespace MaxSumSubArray { class Program { static void M
python求100以内素数之和 from math import sqrt # 使用isPrime函数 def isPrime(n): if n <= 1: return False for i in range(2, int(sqrt(n)) + 1): if n % i == 0: return False return True count = 0 for i in range(101): if isPrime(i): count += i print(count) # 单行程序扫描素数
29 [程序 29 求矩阵对角线之和] 题目:求一个 3*3 矩阵对角线元素之和 程序分析:利用双重 for 循环控制输入二维数组,再将 a[i][i]累加后输出. package cskaoyan; public class cskaoyan29 { @org.junit.Test public void diagonal() { java.util.Scanner in = new java.util.Scanner(System.in); int[][] arr = new int[3][