首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
python的dataframe数据怎么去重
2024-09-05
Python中DataFrame去重
# 去除重复行数据 keep:'first':保留重复行的第一行,'last':保留重复行的最后一行,False:删除所有重复行df = df.drop_duplicates( subset=['YJML','EJML','SJML','WZLB','GGXHPZ','CGMS'], # 去重列,按这些列进行去重 keep='first' # 保存第一条重复数据 )
Python中dataframe数据框中选择某一列非空的行
利用pandas自带的函数notnull可以很容易判断某一列是否为null类型,但是如果这一列中某一格为空字符串"",此时notnull函数会返回True,而一般我们选择非空行并不包括这一点,所以需要把这一类也去掉. # df为需要筛选的数据框,col为选择非空依赖的列 df = df[(df[col].notnull) & (df[col] != "")] 如果数据来源是MySQL数据库,用sql函数调用的时候也要注意相同的问题. SELECT col F
吴裕雄--天生自然python学习笔记:pandas模块DataFrame 数据的修改及排序
import pandas as pd datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]] indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"] columns = ["语文", "数学", "英文", "自然", &
为什么说Python 是大数据全栈式开发语言
欢迎大家访问我的个人网站<刘江的博客和教程>:www.liujiangblog.com 主要分享Python 及Django教程以及相关的博客 交流QQ群:453131687 原文链接 http://www.envicloud.cn/pages/news/418.html#4 前段时间,ThoughtWorks在深圳举办一次社区活动上,有一个演讲主题叫做"Fullstack JavaScript",是关于用JavaScript进行前端.服务器端,甚至数据库(MongoDB)
Python爬虫 股票数据爬取
前一篇提到了与股票数据相关的可能几种数据情况,本篇接着上篇,介绍一下多个网页的数据爬取.目标抓取平安银行(000001)从1989年~2017年的全部财务数据. 数据源分析 地址分析 http://money.finance.sina.com.cn/corp/go.php/vFD_FinancialGuideLine/stockid/000001/ctrl/2017/displaytype/4.phtml 在浏览器(PC上)中打开这个地址,就可以看到下图显示的财务数据.这个地址是一个通用格式:(
用Python浅析股票数据
用Python浅析股票数据 本文将使用Python来可视化股票数据,比如绘制K线图,并且探究各项指标的含义和关系,最后使用移动平均线方法初探投资策略. 数据导入 这里将股票数据存储在stockData.txt文本文件中,我们使用pandas.read_table()函数将文件数据读入成DataFrame格式. 其中参数usecols=range(15)限制只读取前15列数据,parse_dates=[0]表示将第一列数据解析成时间格式,index_col=0则将第一列数据指定为索引. impor
利用Python读取外部数据文件
不论是数据分析,数据可视化,还是数据挖掘,一切的一切全都是以数据作为最基础的元素.利用Python进行数据分析,同样最重要的一步就是如何将数据导入到Python中,然后才可以实现后面的数据分析.数据可视化.数据挖掘等. 在本期的Python学习中,我们将针对Python如何获取外部数据做一个详细的介绍,从中我们将会学习以下4个方面的数据获取: 1.读取文本文件的数据,如txt文件和csv文件 2.读取电子表格文件,如Excel文件 3.读取统计软件生成的数据文件,如SAS数据集.SPSS数据
python操作dataFrame
python数据分析工具pandas中DataFrame和Series作为主要的数据结构. 本文主要是介绍如何对DataFrame数据进行操作并结合一个实例测试操作函数. 1)查看DataFrame数据及属性 df_obj = DataFrame() #创建DataFrame对象 df_obj.dtypes #查看各行的数据格式 df_obj['列名'].astype(int)#转换某列的数据类型 df_obj.head() #查看前几行的数据,默认前5行 df_obj.tail() #查看后几
Python之pandas数据加载、存储
Python之pandas数据加载.存储 0. 输入与输出大致可分为三类: 0.1 读取文本文件和其他更好效的磁盘存储格式 2.2 使用数据库中的数据 0.3 利用Web API操作网络资源 1. 读取文本文件和其他更好效的磁盘存储格式 pandas提供了一些用于将表格型数据读取为DataFrame对象的函数. 1.1 pandas中的解析函数: read_csv 从文件.URL.文件型对象中加载带分隔符的数据.默认分隔符为逗号 read_table 从文件.URL.文件型对象中加载带分隔符的数
使用Python解析JSON数据的基本方法
这篇文章主要介绍了使用Python解析JSON数据的基本方法,是Python入门学习中的基础知识,需要的朋友可以参考下: ----------------------------------------------------------------- Python的json模块提供了一种很简单的方式来编码和解码JSON数据. 其中两个主要的函数是 json.dumps() 和 json.loads() , 要比其他序列化函数库如pickle的接口少得多. 下面演示如何将一个Pyth
python matplotlib plot 数据中的中文无法正常显示的解决办法
转发自:http://blog.csdn.net/laoyaotask/article/details/22117745?utm_source=tuicool python matplotlib plot 数据中的中文无法正常显示的解决办法 在学习<NLP with Ptyhon>一中的过程中,总想用中文语料进行试验,结果在matplotlib.plot生成的统计图表中,中文总是无法正常显示.在网上也找了些资料,说是在程序中指定字体文件,不过那样的话需要对plot进行很多设置,而且都是说的设置
Python/Numpy大数据编程经验
Python/Numpy大数据编程经验 1.边处理边保存数据,不要处理完了一次性保存.不然程序跑了几小时甚至几天后挂了,就啥也没有了.即使部分结果不能实用,也可以分析程序流程的问题或者数据的特点. 2. 及时用 del 释放大块内存.Python缺省是在变量范围(variablescope)之外才释放一个变量,哪怕这个变量在后面的代码没有再被用到,所以需要手动释放大的array. 注意所有对数组的引用都del之后,数组才会被del.这些引用包括A[2:]这样的view,即使np.spl
Windows下Python读取GRIB数据
之前写了一篇<基于Python的GRIB数据可视化>的文章,好多博友在评论里问我Windows系统下如何读取GRIB数据,在这里我做一下说明. 一.在Windows下Python为什么无法读取GRIB 大家在windows系统不能读取GRIB数据的主要原因是,GRIB_API在Windows下无法编译安装,从而导致pygrib安装失败.我曾经也为这个问题苦恼了很久,也到ECMWF论坛里找了很久,也给ECMWF发了邮件,回应我没有做Windows版本的打算,所以在Windows下直接用pygri
Python读取JSON数据,并解决字符集不匹配问题
今天来谈一谈Python解析JSON数据,并写入到本地文件的一个小例子. – 思路如下 从一个返回JSON天气数据的网站获取到目标JSON数据串 使用Python解析出需要的部分 写入到本地文件,供其他的应用程序读取 完成整个业务需求 原料 一个可以获得天气信息的URL网址,如天气信息接口 读取到的结果:(由于是浏览器显示的时候的编码与之不匹配,故出现了乱码,但这并不影响我们对数据的处理) {"weatherinfo":{"city":"鍖椾含"
使用 python 处理 nc 数据
前言 这两天帮一个朋友处理了些 nc 数据,本以为很简单的事情,没想到里面涉及到了很多的细节和坑,无论是"知难行易"还是"知易行难"都不能充分的说明问题,还是"知行合一"来的更靠谱些,既要知道理论又要知道如何实现,于是经过不太充分的研究后总结成此文,以记录如何使用 python 处理 nc 数据. 一.nc 数据介绍 nc 全称 netCDF(The Network Common Data Form),可以用来存储一系列的数组,就是这么简单(参考
【转】Python——plot可视化数据,作业8
Python——plot可视化数据,作业8(python programming) subject1k和subject1v的形状相同 # -*- coding: utf-8 -*- import scipy.io as sio raw_K = sio.loadmat('Subject1K.mat') raw_V = sio.loadmat('Subject1V.mat') k = raw_K['Subject1K'] v = raw_V['Subject1V'] ls_col=['r','g',
[Python] Python 学习 - 可视化数据操作(一)
Python 学习 - 可视化数据操作(一) GitHub:https://github.com/liqingwen2015/my_data_view 目录 折线图 散点图 随机漫步 骰子点数概率 文件目录 折线图 cube_squares.py import matplotlib.pyplot as plt x_values=list(range(1, 5000)) y_values=[pow(x, 3) for x in x_values] plt.scatter(x_values, y_v
python 爬虫与数据可视化--python基础知识
摘要:偶然机会接触到python语音,感觉语法简单.功能强大,刚好朋友分享了一个网课<python 爬虫与数据可视化>,于是在工作与闲暇时间学习起来,并做如下课程笔记整理,整体大概分为4个部分(1.python基础知识 2.爬虫基础知识 3.数据提取与存储 4.数据分析与可视化),入门级课程. 一.python的背景介绍.安装与配置.pycharm的安装与配置.ipython的安装.pip install的使用 二.python的变量与数据类型 数据类型:字符串.数字(整数.浮点数).布尔类型
在DataFrame数据表里面提取需要的行
在DataFrame数据表里面提取需要的行 代码功能: 在DataFrame表格中使用loc(),得到我们想要的行,然后根据某一列元素的值进行排序 此代码中还展示了为DataFrame添加列,即直接name_DataFrame['diff']=___即可,同时可以依据新添加的列元素的值,来对dataframe进行排序 import pandas as pd unames = ['user_id', 'gender', 'age','occupation','zip'] users = pd.re
[Spark][Python][RDD][DataFrame]从 RDD 构造 DataFrame 例子
[Spark][Python][RDD][DataFrame]从 RDD 构造 DataFrame 例子 from pyspark.sql.types import * schema = StructType( [ StructField("age",IntegerType(),True), StructField("name",StringType(),True), StructField("pcode",StringType(),True)
python grib气象数据可视化
基于Python的Grib数据可视化 利用Python语言实现Grib数据可视化主要依靠三个库——pygrib.numpy和matplotlib.pygrib是欧洲中期天气预报中心(ECMWF)的GRIG API C库的Python接口,通过这个库可以将Grib数据读取出来:numpy是Python的一种开源的数值计算扩展,这种工具可用来存储和处理大型矩阵:matplotlib是python著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图:
热门专题
idea tomcat不会自动编译jsp页面
fwrite 删除数据
树莓派烧录系统到sd卡 mac
用js写一个倒计时怎么写
信号量 block 和资源block 的区别
python 网络爬虫 get
java 支持cmd格式参数
如何发布带图片的word
“verilog共阴极数码管循环显示0~F”
dns srv centos 集群
swt Text 只能输入数字
C# 写信息到xml
网站全屏视频背景代码
zedgraph与SQL
C 的空类默认产生哪些成员函数
Ignite数据持久化
ReentrantLock按数据加锁
vcf文件中info怎么导出
windows 2008 启动U盘制作
tp-link路由器无线桥接步骤