#!/usr/bin/env python # -*- coding: utf-8 -*- # 斐波那契数列 def fibonacci_sequence(num): aa = 0 b = 1 li = list() li.append(aa) li.append(b) for i in range(1, num): aa, b = b, a + b li.append(b) return li if __name__ == '__main__': a = fibonacci_sequence(
python练习:斐波那契数列的递归实现 重难点:递归的是实现 def fib(n): if n==0 or n==1: return 1 else: return fib(n-1)+fib(n-2) def testFib(n): for i in range(n+1): print('fib of',i,'=',fib(i)) print(testFib(6)) python练习:使用上述程序计算fib(5),那么需要计算多少次fib(2)的值? 重难点:全局变量的定义和使用 i=0#定义一
定义:在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数. 阶乘实例 n = int(input(">>:")) def f(n): s = 1 for i in range(2, (n + 1)): s *= i return s print(f(n)) 递归 def factorial_new(n): if n==1: return 1 return n*factorial_new(n-1) print(factorial_new(3))
比如,斐波那契数列:1,1,2,3,5,8,13,21,34.... 用列表生成式写不出来,但是我们可以用函数把它打印出来: def fib(number): n, a, b = 0, 0, 1 while n < number: print(b) a, b = b, a + b n = n + 1 return 'OK!' print(fib(5)) 结果: 1 1 2 3 5 OK! 我们可以看出从第一个元素开始,推算出后续任意的元素.很像generator. 要把fib函数变成genera
1).递归 def fib_recur(n): assert n >= 0, "n > 0" if n <= 1: return n return fib_recur(n-1) + fib_recur(n-2) for i in range(1, 20): print(fib_recur(i), end=' ') 2)循环 def fib_loop(n): a, b = 0, 1 for i in range(n+1): a, b = b, a+b return a
# coding=utf-8 # Fibonacci.py Fib = {} def Fibonacci(n): global Fib if Fib.has_key(n): return Fib[n] if n == 0: return 1 if n == 1: return 1 Fib[n] = Fibonacci(n-1) + Fibonacci(n-2) return Fib[n] if __name__ == '__main__': for i in range(50): print F
转载于知乎刘奕聪的方法 一 f = [1, 1]print([f.append((f[-1] + f[-2])) or f.pop(0) for i in range(100)]) /// f.append()返回none值,所以靠f.pop来输出f. 二 print(reduce(lambda f, i: f.append((f[-2] f[-1])) or f, range(98), [1, 1]))
一.三元运算 三元运算又称三目运算,是对简单的条件语句的简写,如: 简单条件处理: if 条件成立: val = 1 else: val = 2 改成三元运算 val = 1 if 条件成立 else 2 二.智能检测文件编码 用第三方模块chardet 首先要安装chardet模块 ,用pip命令进行安装 chardet的用法 import chardet f = open("staff_table.txt","rb") data =f.read() f.clos