数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间.目前数据标准化方法有多种,归结起来可以分为直线型方法(如极值法.标准差法).折线型方法(如三折线法).曲线型方法(如半正态性分布).不同的标准化方法,对系统的评价结果会产生不同的影响,然而不幸的是,在数据标准化方法的选择上,还没有通用的法则可以遵循. 常见的方法有:min-max标准化(Min-max normalization),log函数转换,atan函数转换,z-score标准化(zero-mena n
除了从文件加载数据,另一个数据源是互联网,互联网每天产生各种不同的数据,可以用各种各样的方式从互联网加载数据. 一.了解 Web API Web 应用编程接口(API)自动请求网站的特定信息,再对这些信息进行可视化.每次运行,都会获取最新的数据来生成可视化,因此即便网络上的数据瞬息万变,它呈现的信息也都是最新的. Web API是网站的一部分,用于与使用非常具体的URL请求特定信息的程序交互.这种请求称为API调用.请求的数据将以易于处理的格式(如JSON或CSV)返回. GitHub(http
1.从csv文件导入数据 原理:with语句打开文件并绑定到对象f.不必担心在操作完资源后去关闭数据文件,with的上下文管理器会帮助处理.然后,csv.reader()方法返回reader对象,通过该对象遍历所读取文件的所有行. #!/usr/bin/env python import csv filename = 'ch02-data.csv' data = [] try: with open(filename) as f: reader = csv.reader(f) c = 0 for