前言 在文章:NLP入门(四)命名实体识别(NER)中,笔者介绍了两个实现命名实体识别的工具--NLTK和Stanford NLP.在本文中,我们将会学习到如何使用深度学习工具来自己一步步地实现NER,只要你坚持看完,就一定会很有收获的. OK,话不多说,让我们进入正题. 几乎所有的NLP都依赖一个强大的语料库,本项目实现NER的语料库如下(文件名为train.txt,一共42000行,这里只展示前15行,可以在文章最后的Github地址下载该语料库): played on Mond
Keras 重要特性 相同的代码可以在 CPU 或 GPU 上无缝切换运行. 具有用户友好的 API,便于快速开发深度学习模型的原型. 内置支持卷积网络(用于计算机视觉).循环网络(用于序列处理)以及二者的任意组合. 支持任意网络架构:多输入或多输出模型.层共享.模型共享等.这也就是说, Keras能够构建任意深度学习模型,无论是生成式对抗网络还是神经图灵机 Keras 有三个后端实现: TensorFlow 后端.Theano 后端和微软认知工具包( CNTK, Microsoft