首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
python,确定数据是什么分布
2024-09-03
python数据分析之数据分布
转自链接:https://blog.csdn.net/YEPAO01/article/details/99197487 一.查看数据分布趋势 import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline #读取源数据 df = pd.read_csv('http://jse.amstat.org/datasets/normtemp.dat.txt', header=None, s
Python解决数据样本类别分布不均衡问题
所谓不平衡指的是:不同类别的样本数量差异非常大. 数据规模上可以分为大数据分布不均衡和小数据分布不均衡.大数据分布不均衡:例如拥有1000万条记录的数据集中,其中占比50万条的少数分类样本便于属于这种情况.小数据分布不均衡:例如拥有1000条数据样本的数据集中,其中占有10条的少数分类样本便于属于这种情况. 样本类别分布不平衡主要出现在分类问题的建模上.导致样本量少的分类所包含的特征过少,很难从中提取规律:即使得到分类模型,也容易产生过度依赖于有限的数据样本而导致过拟合的问题,当模型应用到新的数
Python图表数据可视化Seaborn:1. 风格| 分布数据可视化-直方图| 密度图| 散点图
conda install seaborn 是安装到jupyter那个环境的 1. 整体风格设置 对图表整体颜色.比例等进行风格设置,包括颜色色板等调用系统风格进行数据可视化 set() / set_style() / axes_style() / despine() / set_context() import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns % ma
Python分类统计数据
在数据的常见分布中,有一种是一对多存储的数据,即一个是key,其他改key对应的多个value.例如气象数据等,每天有很多组,又或者是一个球员,他每天得多少分等等.我做这个东西有三种方法,即:常规编程法,数据库查询法以及pandas包提供的group方法.第一种方法我自己写出的代码比较繁琐,这里不做介绍. 示例数据如下,统计每天对应的level的均值及方差等. Date level 2014/6/10 8.11 2014/6/10 8.02 2014/6/11 8.04 2014/6/11
数据挖掘(二)用python实现数据探索:汇总统计和可视化
今天我们来讲一讲有关数据探索的问题.其实这个概念还蛮容易理解的,就是我们刚拿到数据之后对数据进行的一个探索的过程,旨在了解数据的属性与分布,发现数据一些明显的规律,这样的话一方面有助于我们进行数据预处理,另一方面在进行特征工程时可以给我们一些思路.所以这样一个过程在数据挖掘中还是蛮有用的,相信大家在网上看过不少数据挖掘比赛的Kernel,一般一上来都先是个数据探索的过程.之前听过一个老师讲课,说数据探索过程其实可有可无,直接预处理猛搞,但典型的口嫌体正直,在演示一个比赛的流程时,还是先进行了汇总
《零起点,python大数据与量化交易》
<零起点,python大数据与量化交易>,这应该是国内第一部,关于python量化交易的书籍. 有出版社约稿,写本量化交易与大数据的书籍,因为好几年没写书了,再加上近期"前海智库·zw大数据"项目,刚刚启动. 因为时间紧,只花了半天时间,整理框架和目录. 说是v0.1版,但核心框架已经ok:从项目角度而言,完成度,已经超过70%,剩下的只是体力活. 完成全本书,需要半年以上连续时间,本人没空,大家不要再问:"什么时间可以完成." 配合zwPython,这
Python数据挖掘——数据概述
Python数据挖掘——数据概述 数据集由数据对象组成: 数据的基本统计描述 中心趋势度量 均值 中位数 众数 中列数 数据集的最大值和最小值的平均 度量数据分布 极差 最大值与最小值的差 四分位数 方差 四分位数极差 数据基本统计描述的图形显示 一元分布 分位数图 分位数-分位数图(q-q图) 直方图 二元分布 散点图 数据可视化 1.基于像素的可视化技术 2.几何投影可视化技术 3.基于图符的可视化技术 4.层次可视化技术 度量数据的相似性和相异性 相似 和相异 都称 邻近性 如果不相似,则
python上数据存储 .h5格式或者h5py
最近在做城市计算的项目,数据文件是以.h5的格式存储的,总结下其用法和特点 来自百度百科的简介: HDF(Hierarchical Data Format),可以存储不同类型的图像和数码数据的文件格式,并且可以在不同类型的机器上传输,同时还有统一处理这种文件格式的函数库.大多数计算机都支持这种文件格式. 目前常用的图像文件格式很多,如GIF,JPG,PCX,TIFF等.这些格式共同的缺点是结构太简单,不能存放除影像信息外其他的有用数据,像遥感影像的坐标值.参数等都无法在其中保存,而且用不同格式存
Python验证数据的抽样分布类型
假如要对一份统计数据进行分析,一般其来源来自于社会调研/普查,所以数据不是总体而是一定程度的抽样.对于抽样数据的分析,就可以结合上篇统计量及其抽样分布的内容,判断数据符合哪种分布.使用已知分布特性,可以完成对总体的统计分析. 本文使用python函数判断数据集是否符合特定抽样分布. 数据来源 本次试验使用kagglehttps://www.kaggle.com/datasets上的公开数据集,可以通过搜索框进行数据集搜索. 通过搜索「income」关键值,最后决定使用https://www.ka
python和数据科学(Anaconda)
Python拥有着极其丰富且稳定的数据科学工具环境.遗憾的是,对不了解的人来说这个环境犹如丛林一般(cue snake joke).在这篇文章中,我会一步一步指导你怎么进入这个PyData丛林. 你可能会问,很多现有的PyData包推荐列表怎么样?我觉得对新手来说提供太多的选择可能会受不了.因此这里不会提供推荐列表,我要讨论的范围很窄,只集中于10%的工具,但它们可以完成你90%的工作.当你掌握这些必要的工具后,你就可以浏览PyData工具的长列表了,选择自己接下来要使用的. 值得一提的是,我介
用 Python 排序数据的多种方法
用 Python 排序数据的多种方法 目录 [Python HOWTOs系列]排序 Python 列表有内置就地排序的方法 list.sort(),此外还有一个内置的 sorted() 函数将一个可迭代对象(iterable)排序为一个新的有序列表. 本文我们将去探索用 Python 做数据排序的多种方法. 排序基础 简单的升序排序非常容易:只需调用 sorted() 函数,就得到一个有序的新列表: 你也可以使用 list.sort() 方法,此方法为就地排序(并且返回 None 来避免混淆).
hdfs 数据块重分布 sbin/start-balancer.sh -threshold
数据块重分布sbin/start-balancer.sh -threshold <percentage of disk capacity>percentage of disk capacityHDFS达到平衡状态的磁盘使用率偏差值值越低各节点越平衡,但消耗时间也更长
python爬虫+数据可视化项目(关注、持续更新)
python爬虫+数据可视化项目(一) 爬取目标:中国天气网(起始url:http://www.weather.com.cn/textFC/hb.shtml#) 爬取内容:全国实时温度最低的十个城市气温排行榜 使用工具:requests库实现发送请求.获取响应. beautifulsoup实现数据解析.提取和清洗 pyechart模块实现数据可视化 爬取结果:柱状图可视化展示: 直接放代码(详细说明在注释里,欢迎同行相互交流.学习~): import requests from bs4 impo
随想:目标识别中,自适应样本均衡设计,自适应模型结构(参数可变自适应,模型结构自适应,数据类别or分布自适应)
在现在的机器学习中,很多人都在研究自适应的参数,不需要人工调参,但是仅仅是自动调参就不能根本上解决 ai识别准确度达不到实际生产的要求和落地困难的问题吗?结论可想而知.如果不改变参数,那就得从算法的结构入手, 比如,现有的谷歌的MnasNet系列,这种是在人工的指导下进行的,但是,仅仅是这样就够了吗?我个人觉得还不够 1.在做机器学习的时候,我们模型的指标提不上去的时候,通常原因是因为边缘样本,也就是我们所说的hard-example, 如果和解决边缘样本呢?目前是人工发现这些样本并增加hard
python调用数据返回字典dict数据的现象2
python调用数据返回字典dict数据的现象2 思考: 话题1连接:https://www.cnblogs.com/zwgbk/p/10248479.html在打印和添加时候加上内存地址id(),可以查看结果.可以得出结论:1.在make()函数里,生成数据的两种不同赋值方式. 1.1第一种情况,是在一个内存地址生成了一个空的字典.随后每次调用数据时候改变这个内存地址的里的数据. 1.2第二种情况,是在每次调用数据的时候,都生成不同内存地址的字典.2.添加进list后,并不是把数据直接保存在l
python调用数据返回字典dict数据的现象1
python调用数据返回字典dict数据的现象1 思考: 可以看到这两种情况,区别在于构造函数make()里赋值给字典dict的方式不同.使用相同的调用方式,而结果却完全不同.可以看到第二种情况才是我们想要的结果.目前不知道第一种情况为何会出现这样的结果,是何种原因造成的?话题2:https://www.cnblogs.com/zwgbk/p/10251909.html 说明: 第一种情况 键入代码: def make(): dict= { 'a': None } for a in range(
python 小数据池,is and "==",decode ,encode
一:小数据池 1.python运行中的缓存: 2.目的:缓存我们字符串,整数,布尔值.在使用的时候不需要创建过多的对象 3.python 缓存数据:缓存:int, str, bool. int: 缓存范围 -5~256 str: 1. 长度小于等于1,直接缓存 2. 长度大于1. 字符串中如果只有数字, 字母, 下划线. 就会缓存 3. 乘以1. 同上, 乘以大于
【转】Python用数据说明程序员需要掌握的技能
[转]Python用数据说明程序员需要掌握的技能 https://blog.csdn.net/HuangZhang_123/article/details/80497951 当下是一个大数据的时代,各个行业都离不开数据的支持.因此,网络爬虫就应运而生.网络爬虫当下最为火热的是Python,Python开发爬虫相对简单,而且功能库相当完善,力压众多开发语言. 本次教程我们爬取前程无忧的招聘信息来分析Python程序员需要掌握那些编程技术.首先在谷歌浏览器打开前程无忧的首页,按F12打开浏览器的开发
MySQL实验准备(二)--Python模拟数据(MySQL数据库)
Python模拟数据(MySQL数据库) 数据模拟 目的:模拟多个表的插入和查询数据的模拟,再通过基准测试脚本测试服务器性能和收集数据,仿真模拟. 备注: 如果需要基础的python环境,可以查看<MySQL实验准备(一)--环境准备>文档 实验脚本 通过对一个简单表的脚本插入和查询模拟,后面能 举一反三,完成多张表的多表插入,多线程的多表插入,多线程查询,和多线程的join查询. 数据库的表结构 mysql> show create table zdemo.student; +----
【转】Python之数据序列化(json、pickle、shelve)
[转]Python之数据序列化(json.pickle.shelve) 本节内容 前言 json模块 pickle模块 shelve模块 总结 一.前言 1. 现实需求 每种编程语言都有各自的数据类型,其中面向对象的编程语言还允许开发者自定义数据类型(如:自定义类),Python也是一样.很多时候我们会有这样的需求: 把内存中的各种数据类型的数据通过网络传送给其它机器或客户端: 把内存中的各种数据类型的数据保存到本地磁盘持久化: 2.数据格式 如果要将一个系统内的数据通过网络传输给其它系统或客户
Python处理数据
由于找实习,要学习python处理数据,python连接mysql,python读写文件,python读写xlsx文件,这些只要引入了相关的包,就非常容易,处理过程非常清晰.模块如果封装的好,没怎么学过编程的人也很容易上手. 就把python当做自行车用,用脚本处理一些重复性的工作非常便捷,但程序就是写不长,但是这些脚本已经能够完成我们的工作了.另外,pycharm真的很好用,不仅体现在代码自动提示,还在安装外部库时非常方便.
热门专题
sentinel 参数限流
c语言字符串函数strtok
golang 编译的exe文件如何加图标
furion 视图引擎
el tree的横向滚动条
Xamarin.Forms 桌面快捷方式
webmagic工具类
Unicode字符库
canvas demo 在线
ubuntu登录windows rdc
含有隐变量的EM算法
js list转map
post 上传文件excel 跨域 html
dangerouslyHTML自动转义
GAN网络训练batch_size和epoch
MAKEFILE打印Image Type
和平精英python制作源代码
VMware14安装教程
qt plugins 位置
python pip 安装本地文件