原文:Simple Tutorial on SVM and Parameter Tuning in Python and R 介绍 数据在机器学习中是重要的一种任务,支持向量机(SVM)在模式分类和非线性回归问题中有着广泛的应用. SVM最开始是由N. Vapnik and Alexey Ya. Chervonenkis 在1963年提出.从那时候开始,各种支持向量机被成功用于解决各种现实问题,比如文本聚类,图像分类,生物信息学(蛋白质分类,爱长分类),手写字符识别等等. 内容 1. 什么是支持
技术背景 python作为一门编程语言,有非常大的生态优势,但是其执行效率一直被人诟病.纯粹的python代码跑起来速度会非常的缓慢,因此很多对性能要求比较高的python库,需要用C++或者Fortran来构造底层算法模块,再用python进行上层封装的方案.在前面写过的这篇博客中,介绍了使用f2py将fortran代码编译成动态链接库的方案,这可以认为是一种"事前编译"的手段.但是本文将要介绍一种即时编译(Just In Time,简称JIT)的手段,也就是在临近执行函数前,才对其