首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
python f二值图的保存
2024-10-28
python之PIL 二值图像处理和保存
0. 1.参考 http://pszpcl.baike.com/article-77327.htmlwindows 图片右键:属性 详细信息 位深度位深度 用于指定图像中的每个像素可以使用的颜色信息数量. 位深度为 1 的图像的像素有两个可能的值:黑色和白色. 位深度为 8 的灰度模式图像有 256 个可能的灰色值. RGB 图像由三个颜色通道组成.8 位/像素的 RGB 图像中的每个通道有 256 个可能的值,这意味着该图像有 1600 万个以上可能的颜色值. 有时将
coco数据集标注图转为二值图python(附代码)
coco数据集大概有8w张以上的图片,而且每幅图都有精确的边缘mask标注. 后面后分享一个labelme标注的json或xml格式转二值图的源码(以备以后使用) 而我现在在研究显著性目标检测,需要的是边缘mask的二值图像.搜了很久,并没有人做过这种工作,只能得到如下的掩膜图 而我需要的图像为二值图,如下 说下 我的过程 并附上代码: 首先,coco数据集将所有的8w多张图片标注信息整合到一个json文件中,所以我们需要将单张图片标注信息json文件提取出来,以下是批量提取脚本. 注: 需要改
用 Python 通过马尔可夫随机场(MRF)与 Ising Model 进行二值图降噪
前言 这个降噪的模型来自 Christopher M. Bishop 的 Pattern Recognition And Machine Learning (就是神书 PRML……),问题是如何对一个添加了一定椒盐噪声(Salt-and-pepper Noise)(假设噪声比例不超过 10%)的二值图(Binary Image)去噪. 原图 -> 添加 10% 椒盐噪声的图: 放在 github 上的可运行完整代码:https://github.com/joyeecheung/simulated
zw·准专利·高保真二值图细部切分算法
zw·准专利·高保真二值图细部切分算法 高保真二值图细部切分算法,是中国字体协会项目的衍生作品. 说准专利算法,是因为对于图像算法的标准不了解,虽然报过专利,但不是这方面的,需要咨询专业的专利顾问. 原型是用opencv+python实现的,因为Halcon,对于协会的设计师,门槛太高,所以,特意设计了一套opencv+python的live-cd,解压即可,无需配置. 高保真二值图细部切分算法,初看很简单,其实很复杂. ps,简单的东西,往往更复杂,就像每天遇到的:UR
超越OpenCV速度的MorphologyEx函数实现(特别是对于二值图,速度是CV的4倍左右)。
最近研究了一下opencv的 MorphologyEx这个函数的替代功能, 他主要的特点是支持任意形状的腐蚀膨胀,对于灰度图,速度基本和CV的一致,但是 CV没有针对二值图做特殊处理,因此,这个函数对二值图的速度和灰度是一样的,但是这个函数,如果使用的话,估计大部分还是针对二值图像,因此,我对二值图做了特别优化,速度可以做到是CV这个函数的4倍左右. MorphologyEx的主要功能是对灰度图进行相关形态学的处理,比如腐蚀.膨胀.开闭等计算,其代码可以在github上找到:https://gi
opencv删除二值图中较小的噪点色块
CvSeq* contour = NULL; double minarea = 100.0; double tmparea = 0.0; CFileDialog dlg(true); if (dlg.DoModal()==IDOK) { CvMemStorage* storage = cvCreateMemStorage(); IplImage* img_src= cvLoadImage(dlg.GetPathName(),CV_LOAD_IMAGE_ANYCOLOR); IplImage* i
c语言实现灰度图转换为二值图
将上篇得到的灰度图转换为二值图,读取像素数据,低于某一值置0,否则设置为255,为得到更好的效果不同图片应采用不同的值 /* 2015年6月2日11:16:22 灰度图转换为二值图 blog:http://www.cnblogs.com/wd1001/ */ #include<stdio.h> #include<malloc.h> #include<stdlib.h> /* 位图头结构 */ #pragma pack(1) typedef struct tagBITMA
使用OpenCV查找二值图中最大连通区域
http://blog.csdn.net/shaoxiaohu1/article/details/40272875 使用OpenCV查找二值图中最大连通区域 标签: OpenCVfindCoutours 2014-10-19 22:31 2802人阅读 评论(0) 收藏 举报 分类: 图像与OpenCV(15) 版权声明:本文为shaoxiaohu原创文章,欢迎转载,请注明出处,谢谢. 上一篇博文中介绍了matlab查找最大连通区域的方法,OpenCV函数中也有类似的函数与之对应,findC
S0.4 二值图与阈值化
目录 二值图的定义 二值图的应用 阈值化 二值化/阈值化方法 1,无脑简单判断 opencv3函数threshold()实现 2,Otsu算法(大律法或最大类间方差法) OpenCV3 纯代码实现大津法 OpenCV3 threshold算法调用Otsu阈值化 改进版本 OpenCV3函数adaptiveThreshold实现自适应阈值 二值图的定义 二值图是一种特殊的灰度图,即每个像素点要么是白(0),要么是黑(255) 无论是灰度图还是二值图都是用阈值化的知识. 二值图的应用 图像的二值化使
C语言实现将彩色BMP位图转化为二值图
CTF做了图片的隐写题,还没有形成系统的认识,先来总结一下BMP图的组成,并通过将彩色图转为二值图的例子加深下理解. 只写了位图二进制文件的格式和代码实现,至于诸如RGB色彩和调色板是什么的一些概念就不啰嗦了. BMP位图文件格式 BMP文件由文件头.位图信息头.调色板和图形数据四部分组成,真彩色图是没有调色板的.每部分的具体结构在代码中具体列出并解释. 结构体的对齐 定义文件头部各结构体时要注意对齐的问题,至于什么是结构体对齐,请看这篇博文,写的很详细http://www.cnblogs.co
BMP彩色转成黑色二值图
一天半把彩色bmp转成黑白了. 原理是: 第一步:读出位图数据的偏移位置:即第11个字节,用fseek即可. 然后将偏移位置之前的数据全部写入新的bmp图中. 第二步:用fseek移到位图数据这前,判断并转换成二值的黑白图. 还有,要注意一点:查ascii表B 0x42,M0x4d,bfType 为两个字节,B为low字节,M为high字节所以bfType=0x4D42,而不是0x424D,但注意) 源代码:http://pan.baidu.com/share/link?shareid=3295
10、OpenCV Python 图像二值化
__author__ = "WSX" import cv2 as cv import numpy as np #-----------二值化(黑0和白 255)------------- #二值化的方法(全局阈值 局部阈值(自适应阈值)) # OTSU #cv.THRESH_BINARY 二值化 #cv.THRESH_BINARY_INV(黑白调换) #cv.THRES_TRUNC 截断 def threshold(img): #全局阈值 gray = cv.cvtColor(img
python图片二值化提高识别率
import cv2from PIL import Imagefrom pytesseract import pytesseractfrom PIL import ImageEnhanceimport reimport string def createFile(filePath,newFilePath): img = Image.open(filePath) # 模式L”为灰色图像,它的每个像素用8个bit表示,0表示黑,255表示白,其他数字表示不同的灰度. Img = img.conver
opencv python 图像二值化/简单阈值化/大津阈值法
pip install matplotlib 1简单的阈值化 cv2.threshold第一个参数是源图像,它应该是灰度图像. 第二个参数是用于对像素值进行分类的阈值, 第三个参数是maxVal,它表示如果像素值大于(有时小于)阈值则要给出的值. OpenCV提供不同类型的阈值,它由函数的第四个参数决定. 不同的类型是: cv2.THRESH_BINARY 如果 src(x,y)>threshold ,dst(x,y) = max_value; 否则,dst(x,y)=0 cv.THRESH_B
利用python将二值csv格式转换为矩阵
#!/usr/bin/env python # coding:utf-8 #import pandas as pd, numpy as np; ''' 将csv文件转换为对应的邻接矩阵mat ''' from numpy import *; def protein_complexes_trans(): file = open('protein_complexes.csv'); filePro = open('complexes', 'a'); fileTarget = open('targets
干货满满:python实现二维图制作
python全代码如下 import re import csv import matplotlib.pyplot as plt x=[] y=[] m=eval(input()) #输入折线条数 for i in range(m): y.append([]) fo = open("E:\\shu\\2.txt", "r", encoding='UTF-8') plt.ylim(0, 20) # 设定y轴范围 for line in fo.readlines():
opencv统计二值图黑白像素个数
#include "iostream" #include "queue" #include "Windows.h" #include <opencv2/ml/ml.hpp> #include "opencv2/opencv.hpp" #include "Windows.h" #include "opencv2/core/core.hpp" #include "ope
python 图像处理中二值化方法归纳总结
python图像处理二值化方法 1. opencv 简单阈值 cv2.threshold 2. opencv 自适应阈值 cv2.adaptiveThreshold 3. Otsu's 二值化 例子: 来自 : OpenCV-Python 中文教程 import cv2 import numpy as np from matplotlib import pyplot as plt img = cv2.imread('scratch.png', 0) # global thresholding r
【沥血整理】灰度(二值)图像重构算法及其应用(morphological reconstruction)。
不记得是怎么接触并最终研究这个课题的了,认识我的人都知道我是没有固定的研究对象的,一切看运气和当时的兴趣.本来研究完了就放在那里了,一直比较懒的去做总结,但是想一想似乎在网络上就没有看到关于这个方面的资料,能搜索到的都是一些关于matlab相关函数的应用,决定还是抽空趁自己对这个算法还有点记忆的时候写点东西吧,毕竟这个算法还有一些应用是值得回味和研究的.而且也具有一定的工程价值. 怎么说呢,其实在很早浏览matlab的图像处理工具箱的时候,就无数次的看到过这些函数,但是无奈当时不知道他们有什么用
opencv二值化处理
#include "stdafx.h"//对一张图片进行二值化处理 IplImage *pSrclmg =NULL;//载入的图片IplImage *pDeclmg =NULL;//生成的图像 void onTrackerSlid(int thresth){ /*int i,j,k; //设置一个阈值,如果大于这个阈值就赋为255,小于这个阈值就赋为0 int height =pDeclmg->height; int width =pDeclmg->width; int s
OpenCV图像的二值化
图像的二值化: 与边缘检测相比,轮廓检测有时能更好的反映图像的内容.而要对图像进行轮廓检测,则必须要先对图像进行二值化,图像的二值化就是将图像上的像素点的灰度值设置为0或255,这样将使整个图像呈现出明显的黑白效果.在数字图像处理中,二值图像占有非常重要的地位,图像的二值化使图像中数据量大为减少,从而能凸显出目标的轮廓. 下面就介绍OpenCV中对图像进行二值化的关键函数——cvThreshold(). 函数功能:采用Canny方法对图像进行边缘检测函数原型:void cvThreshold(
热门专题
googole在线代理
windows 下haproxy 2.4.1进程设置
springcloud 规范
树莓派 网卡链路聚合
calendar取月份
js sort 多个条件
5G频率在40MHZ下有几个不重叠的信道
matlab中求信号fft后的功率谱
码匠能ssh 链接redis吗
matlab画带有方向的箭头线
Xtrareport预览时加内容
Matlab偏最小二乘法
imagenet2017和2012的区别
pycharm terminal不自动进入虚拟环境
webbrowser 滑动
flash hold write保护作用
VMware14安装教程
window命令行转到桌面
ios uilable 换行规则
java Long集合contains