首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
python opencv 提取图像低频
2024-11-04
Python+OpenCV图像处理(七)—— 滤波与模糊操作
过滤是信号和图像处理中基本的任务.其目的是根据应用环境的不同,选择性的提取图像中某些认为是重要的信息.过滤可以移除图像中的噪音.提取感兴趣的可视特征.允许图像重采样等等.频域分析将图像分成从低频到高频的不同部分.低频对应图像强度变化小的区域,而高频是图像强度变化非常大的区域.在频率分析领域的框架中,滤波器是一个用来增强图像中某个波段或频率并阻塞(或降低)其他频率波段的操作.低通滤波器是消除图像中高频部分,但保留低频部分.高通滤波器消除低频部分.参考博客:https://blog.csdn.net
使用Python+OpenCV进行图像模板匹配(Match Template)
2017年9月22日 BY 蓝鲸 LEAVE A COMMENT 本篇文章介绍使用Python和OpenCV对图像进行模板匹配和识别.模板匹配是在图像中寻找和识别模板的一种简单的方法.以下是具体的步骤及代码. 首先导入所需库文件,numpy和cv2. Source code #导入所需库文件 import cv2 import numpy as np 然后加载原始图像和要搜索的图像模板.OpenCV对原始图像进行处理,创建一个灰度版本,在灰度图像里进行处理和查找匹配.然后使用相同的坐标在
Python opencv提取视频中的图片
作者:R语言和Python学堂链接:https://www.jianshu.com/p/e3c04d4fb5f3 这个函数就是本文要介绍的video2frames()函数,功能就是从视频中提取图片,名称“video2frames”是我自己取的,还比较形象.现将它分享给大家,感兴趣的小伙伴们可以参考一下,完整代码附在文末. 1. 主要功能 这个函数有以下主要功能: 提取特定时间点图片,比如:提取视频第3秒, 第5秒,第9秒图片 设定提取的起始时刻,比如:从视频的第10秒开始提取 设定提取的终止时刻
python+opencv实现图像缩放
x, y = img_.shape[0:2] img_ = cv2.resize(img_, (int(y/2), int(x/2))) 实现图像长宽缩小为原来的一半
python+opencv实现图像自适应阈值的均衡化
内容涉及:列表遍历,图像均衡化,图像通道分离与合并 import cv2 import numpy as np import os for path in open("org_junheng.txt"): # 遍历目标图片列表 path = path.replace('\n', '') # 去除换行符 img = cv2.imread(path, 1) (b, g, r) = cv2.split(img) # 图像通道分割 clahe = cv2.createCLAHE(clipLim
python+opencv检测图像清晰度
直接上代码,list_jian.txt为待检测图像路径列表 import cv2 import numpy as np import os for path in open("list_jian.txt"): path = path.replace('\n', '') #去除换行符号 img = cv2.imread(path, 1) width,height = img.shape[:2][::-1] img_resize = cv2.resize(img,(int(width*1.
python opencv:图像的一些属性与操作
img = cv.imread(xxx) # 常用的有以下属性 type(img) # img的数据类型 img.shape # img的结构 img.size # img的大小 img.dtype # img中元素的类型
Python+opencv打开修图的正确方式get
先逼逼两句: 图像是 Web 应用中除文字外最普遍的媒体格式. 流行的 Web 静态图片有 JPEG.PNG.ICO.BMP 等.动态图片主要是 GIF 格式.为了节省图片传输流量,大型互联网公司还会定制特殊格式的图片,WEBP 格式就是一个代表. Python 除了数据分析,做图片处理也是非常好用的. 用 Python 做图片处理,最著名的库就是 PIL(Python Imaging Library)了,支持最新的 Python3,而且有许多新的特性,Pillow也成为了 Python 图片处
opencv提取截获图像(总结摘来)
opencv提取截获图像(总结摘来) http://blog.csdn.net/wuxiaoyao12/article/details/7305865 版权声明:本文为博主原创文章,未经博主允许不得转载. 截取 Rect rect(10, 20, 100, 50); Mat image_roi = image(rect); 分割/聚合颜色平面 split( ); merge( ); 案例一.得到由矩形提取到的图像 第一步,把截取图像中需要的区域存入矩阵. CvMat* cvGetSubRect
Python OpenCV 图像相识度对比
强大的openCV能做什么我就不啰嗦,你能想到的一切图像+视频处理. 这里,我们说说openCV的图像相似度对比, 嗯,说好听一点那叫图像识别,但严格讲, 图像识别是在一个图片中进行类聚处理,比如图片人脸识别,眼部识别,但相识度对比是指两个或两个以上的图片进行对比相似度. 先来几张图片 (a.png) (a_cp.png) (t1.png) (t2.png) 其中,a_cp.png 是复制a.png,也就是说是同一个图片, t1.png 与t2.png 看起来相同
[OpenCV-Python] OpenCV 中图像特征提取与描述 部分 V (一)
部分 V图像特征提取与描述 OpenCV-Python 中文教程(搬运)目录 29 理解图像特征 目标本节我会试着帮你理解什么是图像特征,为什么图像特征很重要,为什么角点很重要等.29.1 解释 我相信你们大多数人都玩过拼图游戏吧.首先你们拿到一张图片的一堆碎片,要做的就是把这些碎片以正确的方式排列起来从而重建这幅图像.问题是,你怎样做到的呢?如果把你做游戏的原理写成计算机程序,那计算机就也会玩拼图游戏了.如果计算机可以玩拼图,我们就可以给计算机一大堆自然图片,然后就可以让计算机把它拼成一张大图
深入学习OpenCV中图像灰度化原理,图像相似度的算法
最近一段时间学习并做的都是对图像进行处理,其实自己也是新手,各种尝试,所以我这个门外汉想总结一下自己学习的东西,图像处理的流程.但是动起笔来想总结,一下却不知道自己要写什么,那就把自己做过的相似图片搜索的流程整理一下,想到什么说什么吧. 首先在进行图片灰度化处理之前,我觉得有必要了解一下为什么要进行灰度化处理. 图像灰度化的目的是什么? 将彩色图像转化为灰度图像的过程是图像的灰度化处理.彩色图像中的每个像素的颜色由R,G,B三个分量决定,而每个分量中可取值0-255,这样一个像素点可以有1600
python OpenCV使用
关于OpenCV简介 OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows.Android和Mac OS操作系统上.它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Ruby.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法.OpenCV用C++语言编写,它的主要接口也是C++语言,但是依然保留了大量的C语言接口. 在计算机视觉项目的开发中,OpenCV作为较大众的开源库,拥有了丰富的常
python+opencv实现车牌定位
写在前面 HIT大三上学期视听觉信号处理课程中视觉部分的实验三,经过和学长们实验的对比发现每一级实验要求都不一样,因此这里标明了是2019年秋季学期的视觉实验三. 由于时间紧张,代码没有进行任何优化,实验算法仅供参考. 实验要求 对给定的车牌进行车牌识别 实验代码 代码首先贴在这里,仅供参考 源代码 实验代码如下: import cv2 import numpy as np def lpr(filename): img = cv2.imread(filename) # 预处理,包括灰度处理,高斯
python opencv识别蓝牌车牌号 之 取出车牌号 (1/3)
概述 车牌识别是计算机视频图像识别技术在车辆牌照识别中的一种应用,通常来讲如果结合opencv进行车牌识别主要分为四个大步骤,分别为: 图像采集 车牌定位 分割车牌字符 字符识别 当然,如果结合了机器学习可能步骤会变得更为精简,但是从opencv基础方法开始也不失为一种学习进步,此案例仅仅从蓝牌车牌入手,作为学习交流用,暂不打算花时间研究绿牌.黄牌车等车牌识别. 图像采集我们直接掠过,现在假设我们已经完成了图像采集,得到了包含车牌的图片.我们直接从车牌定位开始. *** 文中的车辆.车牌均来自网
[OpenCV实战]51 基于OpenCV实现图像极坐标变换与逆变换
在图像处理领域中,经常通过极坐标与笛卡尔直角坐标的互转来实现图像中圆形转为方形,或者通过极坐标反变换实现方形转圆形.例如钟表的表盘,人眼虹膜,医学血管断层都需要用到极坐标变换来实现圆转方. 文章目录 1 基础数学知识 1.1 极坐标 1.2 二维直角坐标系转换 2 圆形区域转换为矩形区域 2.1 预设值 2.2 标准圆形转换 2.2.1 Step1 获得各点的极坐标 2.2.2 Step2 获得直角坐标 2.2.3 Step3 获得OpenCV图像坐标 2.2.4 示例代码 2.3 任意角度圆形
.NET + OpenCV & Python + OpenCV 配置
最近需要做一个图像识别的GUI应用,权衡了Opencv+ 1)QT,2)Python GUI,3).NET后选择了.NET... 本文给出C#+Opencv和Python+Opencv的相应参考,节省大家时间. (一)C#.NET + Opencv 1)下载并安装Emgu库(for opencv on .NET env) Download @ http://sourceforge.net/projects/emgucv/ 2)How to use opencv on C#? VS上配置Emgu(
Python+OpenCV图像处理(一)
Python+OpenCV图像处理(一): 读取,写入和展示图片 调用摄像头拍照 调用摄像头录制视频 1. 读取.写入和展示图片 图像读入:cv2.imread() 使用函数cv2.imread() 读入图像.这幅图像应该在此程序的工作路径,或者给函数提供完整路径,第二个参数是要告诉函数应该如何读取这幅图片. cv2.IMREAD_COLOR:读入一副彩色图像.图像的透明度会被忽略, 这是默认参数. cv2.IMREAD_GRAYSCALE:以灰度模式读入图像 PS:调用opencv,就算图像的
Java基于opencv实现图像数字识别(二)—基本流程
Java基于opencv实现图像数字识别(二)-基本流程 做一个项目之前呢,我们应该有一个总体把握,或者是进度条:来一步步的督促着我们来完成这个项目,在我们正式开始前呢,我们先讨论下流程. 我做的主要是表格中数字的识别,但这个不是重点.重点是通过这个我们可以举一反三,来实现我们自己的业务. 图像的识别主要分为两步:图片预处理和图像识别:这两步都很重要 图像预处理: 1. 图像灰度化:二值化 2. 图像降噪,去除干扰线 3. 图像腐蚀.膨胀处理 4. 字符分割 5. 字符归一化 图像识别: 1.
原来CNN是这样提取图像特征的。。。
对于即将到来的人工智能时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的领域,会不会感觉马上就out了?作为机器学习的一个分支,深度学习同样需要计算机获得强大的学习能力,那么问题来了,我们究竟要计算机学习什么东西?答案当然是图像特征了.将一张图像看做是一个个像素值组成的矩阵,那么对图像的分析就是对矩阵的数字进行分析,而图像的特征,就隐藏在这些数字规律中.深度学习对外推荐自己的一个很重要的点——深度学习能够自动提取特征.本文主要介绍卷积层提取特征的原理过程,文
热门专题
java中数据字典有什么作用
Kicad如何画板框
kali linux 下载stegsolve命令
mysqlDump 不导出存储过程
charles 32位
C# 4.0 异步加载
github windows 命令行登陆
脚本开头#!/usr/bin/
cefsharp 图形页面切换不变
.net 时区时间转换为本地时间
非对称补偿 correction值
i for i in list属于什么语法
树莓派 教程 土壤温湿度
微信小程序单张图片上传
转为表达式目录树 转为sql
qt判断字符串包含空格和中文
Windows11无法使用用友uap
权限 No input file specified.
springboot jdk代理报错
winform开发蓝牙