首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
python opencv 积分图计算局部平均值
2024-11-09
Opencv中integral计算积分图
Paul Viola和Michael Jones在2001年首次将积分图应用在图像特征提取上,在他们的论文"Rapid Object Detection using a Boosted Cascade of Simple Features"中,积分图被当作一种新的图像特征表征方式,可以把检测的Haar特征非常高效的计算出来,用于实时人脸检测系统. 积分图是一种能够描述全局信息的矩阵表示方法,其构造方式是积分图像上位置(i,j)处的值ii(i,j)是原图像(i,j)左上角方向所有像素的和
opencv::积分图计算
利用积分图像,可以计算在某象素的上-右方的或者旋转的矩形区域中进行求和.求均值以及标准方差的计算,并且保证运算的复杂度为O(). #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; int main(int argc, char** argv) { Mat src = imread("D:/vcprojects/images/test.png", IMREAD_GRAYSCA
OpenCV——积分图计算
#include <opencv2/opencv.hpp> #include <iostream> #include "math.h" using namespace cv; using namespace std; int main(int argc, char** argv) { Mat src = imread(); if (src.empty()) { printf("could not load image...\n"); ; }
Matlab 快速多通道积分图计算函数
所谓快速多通道积分图计算,其实就是 cumsum2D. 我写了一个比较快的版本(比 VLFeat 的快),用 mex 编译一下就能用了. 代码 #include <string.h> #include <mex.h> #include <stdio.h> #include <stdint.h> // compute integral image template <typename T> void integral(const T* in, T*
Python用积分思想计算圆周率
[文本出自天外归云的博客园] 早上起来突然想求圆周率,1单位时圆的面积. 代码如下: from math import pow, sqrt def calc_circle_s_with(r, dy, x_slices): x_from_start_to_cc = sqrt(1 - pow(dy, 2)) dx = x_from_start_to_cc / x_slices x_to_edge = 1 - x_from_start_to_cc quarter_circle_s = 0 while
积分图(二) - Block - Match(统计)滤波器
原文地址(英文) 积分图 是 [Crow(1984 年)] 提出的用于提高多尺度透视投影中纹理的渲染速度的一种技术. 积分图最流行的应用是 快速归一化互相关 (fast normalized cross-correlation), Viola-Jones 目标检测框架, SURF 变换( Speeded Up Robust Feature). 本章介绍的是积分图在基本的块统计滤波器中的应用. 均值 随机变量 \(X=\{x_1,\dots,x_n\}\) 的离散分布的均值 \(\mu(X)\)
python+OpenCV 特征点检测
1.Harris角点检测 Harris角点检测算法是一个极为简单的角点检测算法,该算法在1988年就被发明了,算法的主要思想是如果像素周围显示存在多于一个方向的边,我们认为该点为兴趣点.基本原理是根据公式: 化简为求解矩阵,最后根据矩阵的特征值判断是否为角点 实现效果: 代码(不用OpenCV): # -*- coding: utf-8 -*- from pylab import * from PIL import Image from numpy import * from scipy.ndi
【AdaBoost算法】积分图代码实现
一.积分图介绍 定义:图像左上方的像素点值的和: 在Adaboost算法中可用于加速计算Haar或MB-LBP特征值,如下图: 二.代码实现 #include <opencv/highgui.h> #include <opencv/cv.h> #include <opencv2/imgproc/imgproc_c.h> using namespace cv; int calcIntImage(unsigned char *pucSrcImage, unsigned in
浅析人脸检测之Haar分类器方法:Haar特征、积分图、 AdaBoost 、级联
浅析人脸检测之Haar分类器方法 一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来. 目前的人脸检测方法主要有两大类:基于知识和基于统计. Ø 基于知识的方法:主要利用先验知识将人脸看作器官特征的组合,根据眼睛.眉毛.嘴巴.鼻子等器官的特征以及相互之间的几何位置关系来检测人脸. Ø 基于统计的方法:将人脸看作一个整体的模式——二维像素矩
python+opencv实现车牌定位
写在前面 HIT大三上学期视听觉信号处理课程中视觉部分的实验三,经过和学长们实验的对比发现每一级实验要求都不一样,因此这里标明了是2019年秋季学期的视觉实验三. 由于时间紧张,代码没有进行任何优化,实验算法仅供参考. 实验要求 对给定的车牌进行车牌识别 实验代码 代码首先贴在这里,仅供参考 源代码 实验代码如下: import cv2 import numpy as np def lpr(filename): img = cv2.imread(filename) # 预处理,包括灰度处理,高斯
python opencv识别蓝牌车牌号 之 取出车牌号 (1/3)
概述 车牌识别是计算机视频图像识别技术在车辆牌照识别中的一种应用,通常来讲如果结合opencv进行车牌识别主要分为四个大步骤,分别为: 图像采集 车牌定位 分割车牌字符 字符识别 当然,如果结合了机器学习可能步骤会变得更为精简,但是从opencv基础方法开始也不失为一种学习进步,此案例仅仅从蓝牌车牌入手,作为学习交流用,暂不打算花时间研究绿牌.黄牌车等车牌识别. 图像采集我们直接掠过,现在假设我们已经完成了图像采集,得到了包含车牌的图片.我们直接从车牌定位开始. *** 文中的车辆.车牌均来自网
Python+opencv打开修图的正确方式get
先逼逼两句: 图像是 Web 应用中除文字外最普遍的媒体格式. 流行的 Web 静态图片有 JPEG.PNG.ICO.BMP 等.动态图片主要是 GIF 格式.为了节省图片传输流量,大型互联网公司还会定制特殊格式的图片,WEBP 格式就是一个代表. Python 除了数据分析,做图片处理也是非常好用的. 用 Python 做图片处理,最著名的库就是 PIL(Python Imaging Library)了,支持最新的 Python3,而且有许多新的特性,Pillow也成为了 Python 图片处
关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph Learning (PGL))
关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph Learning (PGL)) 欢迎fork本项目原始链接:关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph L)https://aistudio.baidu.com/aistudio/projectdetail/4982973?contributionType=1 因为篇幅关系就只放了部分程序在第三章,如有需求可自行fork项目原始链接. 0.1图计算基本概念 首先看到百度百科定义: 图
搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台
搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台 By 子敬叔叔 最近在学习麦好的<机器学习实践指南案例应用解析第二版>,在安装学习环境的时候遇到一些问题,特此写个博客,希望可以帮助到有需要的人,同时也希望像我一样在摸索的人不要走太多的弯路,程序员应该多花时间在学习上,不应该把时间都浪费在折腾环境上面. 下载安装winpython 第一步,我们通过搜索引擎搜索到winPython,一般通过这个网站就可以下载,https://sourceforge.
关于图计算和graphx的一些思考[转]
原文链接:http://www.tuicool.com/articles/3MjURj “全世界的网络连接起来,英特纳雄耐尔就一定要实现.”受益于这个时代,互联网从小众的角落走到了历史的中心舞台.如果无远弗届的互联网将把会整个世界转化成了一个巨型网络,那么就让这一切首先从淘宝开始吧. 最近我们试图将淘宝的交易记录中的物品和人组成一个对分网络(bipartite network).对于这个网络的,我们有许多有趣的问题:这个网络中节点的度分布会是什么样?在这个网络中,是否也存在“权威节点”?是否也有
Python+OpenCV图像处理(一)
Python+OpenCV图像处理(一): 读取,写入和展示图片 调用摄像头拍照 调用摄像头录制视频 1. 读取.写入和展示图片 图像读入:cv2.imread() 使用函数cv2.imread() 读入图像.这幅图像应该在此程序的工作路径,或者给函数提供完整路径,第二个参数是要告诉函数应该如何读取这幅图片. cv2.IMREAD_COLOR:读入一副彩色图像.图像的透明度会被忽略, 这是默认参数. cv2.IMREAD_GRAYSCALE:以灰度模式读入图像 PS:调用opencv,就算图像的
积分图实现均值滤波的CUDA代码
没想到我2010年买的笔记本显卡GT330M 竟然还能跑CUDA,果断小试了一把,环境为CUDA6.5+VS2012,写了一个积分图实现均值滤波.类似于OpenCV的blur()函数. 使用lena.jpg做测试,效果如下: 代码在此: #include "cuda_runtime.h" #include "device_launch_parameters.h" #include <stdio.h> #include <opencv2
python opencv show图片,debug技巧
debug的时候可以直接把图片画出来debug. imshow函数就是python opencv的展示图片的函数,第一个是你要起的图片名,第二个是图片本身.waitKey函数是用来展示图片多久的,默认值为0,即不写参数时默认值为0,代表无限等待.当写参数时,例如waitKey(5),意思是等待5ms.另外当等待时间内无任何操作时等待结束后返回-1,当等待时间内有输入字符时,则返回字符的阿斯克码值. 主要通过while(char(waitKey())!=’q’){}这段代码来解释.这段代码的意思是
【python+opencv】直线检测+圆检测
Python+OpenCV图像处理—— 直线检测 直线检测理论知识: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等).最基本的霍夫变换是从黑白图像中检测直线(线段). 2.Hough变换的原理是将特定图形上的点变换到一组参数空间上,根据参数空间点的累计结果找到一个极大值对应的解,那么这个解就对应着要寻找的几何形状的参数(比如说直线,那么就会得
Spark GraphX宝刀出鞘,图文并茂研习图计算秘笈与熟练的掌握Scala语言【大数据Spark实战高手之路】
Spark GraphX宝刀出鞘,图文并茂研习图计算秘笈 大数据的概念与应用,正随着智能手机.平板电脑的快速流行而日渐普及,大数据中图的并行化处理一直是一个非常热门的话题.图计算正在被广泛地应用于社交网络.电子商务,地图等领域.对于图计算的两个核心问题:图存储模式和图计算模型,Spark GraphX给出了近乎完美的答案, 而Spark GraphX作为图计算领域的屠龙宝刀,对Pregel API的支持更是让Spark GraphX如虎添翼.Spark GraphX可以轻而易举的完成基于度分布
热门专题
mybatis if 正则表达式
kali里面能不能长截图
金蝶 eas 假期相关的表
SU导出FBX默认厘米
ipad overflow卡顿
swagger 不显示返回参数
word 分页符 总是第二行
pdf.js 无效或损坏的pdf
Java android获取手机序列号
jquery.media.js 用法
highcharts y轴隔行换色
用那个editplus弄那为什么显示笔记
startcoroutine在c语言中是什么意思
二次开发cad c# 常用工具
使用mailx发送邮件提示发送失败
linux网络三种模式
hdfs recovery 机制
怎么查看redis的密码
为什么矢量地图 地理坐标转投影坐标失败
dpdk网卡绑定原理